
Chapter 3: Digital Circuit Design and Implementation on FPGAs 

3.1 Introduction to Digital Circuit Design on FPGAs 

Digital circuits are the backbone of modern electronic systems, enabling everything from simple 
logic functions to complex signal processing. Field-Programmable Gate Arrays (FPGAs) provide 
an ideal platform for designing and implementing these circuits due to their flexibility, parallel 
processing capabilities, and high-speed performance. 

This chapter introduces the process of digital circuit design and implementation on FPGAs using 
VHDL and Verilog. We will cover the steps required to translate design specifications into 
functional systems on an FPGA, from conceptualization and simulation to implementation and 
verification. Additionally, we will discuss practical tips for optimizing designs and improving 
performance. 

 

3.2 Understanding the Design Flow for FPGA-Based Systems 

The design flow for FPGA-based systems consists of several stages that ensure the correct 
implementation of a digital circuit. These stages include: 

1.​ Design Specification:​
 

○​ Define the problem and the required functionality.​
 

○​ Create a detailed description of the digital circuit, including its inputs, outputs, 
and behavior.​
 

2.​ Hardware Description:​
 

○​ Write the design using VHDL or Verilog to describe the circuit’s behavior and 
structure.​
 

3.​ Simulation:​
 

○​ Simulate the design to verify its functionality and check for any errors in the 
behavior or performance.​
 

4.​ Synthesis:​
 

○​ Convert the hardware description into a netlist that represents the logical gates 
and components to be implemented on the FPGA.​
 



5.​ Implementation:​
 

○​ Map the synthesized design to the FPGA architecture, considering constraints 
like timing and resource usage.​
 

6.​ Verification:​
 

○​ Verify the design's functionality on the actual FPGA using testbenches and 
real-world stimulus.​
 

7.​ Programming the FPGA:​
 

○​ Generate the configuration bitstream and program the FPGA to implement the 
design.​
 

8.​ Testing and Debugging:​
 

○​ Test the FPGA-based system, troubleshoot any issues, and make necessary 
modifications.​
 

 

3.3 Design Specification and Requirements 

The first step in designing any digital circuit on an FPGA is to understand the functional 
requirements. The design specification should outline the circuit's functionality, input/output 
interfaces, and timing constraints. 

Example: 4-Bit Binary Adder 

Design Specification: 

●​ Inputs: Two 4-bit binary numbers (A and B) and a carry input (Cin).​
 

●​ Outputs: A 4-bit sum (S) and a carry output (Cout).​
 

●​ Functionality: The circuit adds the two binary numbers along with the carry input and 
outputs the sum and carry output.​
 

This simple example will help demonstrate the process of translating a high-level design into 
FPGA code. 

 



3.4 Writing the VHDL/Verilog Code for FPGA Implementation 

Once the design specifications are clear, the next step is to describe the circuit using VHDL or 
Verilog. The code must include the entity/module definition, port declarations, and logic to 
implement the desired functionality. 

3.4.1 VHDL Example: 4-Bit Binary Adder 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
ENTITY ADDER_4BIT IS 
  PORT ( 
    A     : IN  STD_LOGIC_VECTOR(3 DOWNTO 0); 
    B     : IN  STD_LOGIC_VECTOR(3 DOWNTO 0); 
    Cin   : IN  STD_LOGIC; 
    Sum   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 
    Cout  : OUT STD_LOGIC 
  ); 
END ENTITY ADDER_4BIT; 
 
ARCHITECTURE behavior OF ADDER_4BIT IS 
BEGIN 
  PROCESS (A, B, Cin) 
  BEGIN 
    Sum <= A + B + Cin; 
    Cout <= (A(3) AND B(3)) OR (A(3) AND Cin) OR (B(3) AND Cin); 
  END PROCESS; 
END ARCHITECTURE behavior; 
 

In this VHDL example, the ADDER_4BIT entity takes two 4-bit input vectors A and B, along with 
a carry input Cin, and outputs a 4-bit sum Sum and a carry-out Cout. The architecture 
implements the addition operation and calculates the carry-out based on the most significant 
bits of the inputs. 

3.4.2 Verilog Example: 4-Bit Binary Adder 
module ADDER_4BIT (input [3:0] A, input [3:0] B, input Cin, output [3:0] Sum, output Cout); 
 
  assign {Cout, Sum} = A + B + Cin; 
 
endmodule 
 



In this Verilog example, the ADDER_4BIT module also implements the same functionality as the 
VHDL example. The assign statement performs the addition of the input vectors A and B, 
including the carry input Cin, and assigns the result to the Sum output and the carry-out Cout. 

 

3.5 Simulation and Verification 

Before implementing the design on the FPGA, it is important to verify the functionality of the 
digital circuit using simulation. Simulating the design helps detect logic errors, race conditions, 
or timing violations early in the process. 

3.5.1 Writing a Testbench for the 4-Bit Adder 

A testbench is a VHDL or Verilog module that generates input stimuli and checks the outputs of 
the design. Here's an example of a simple testbench for the 4-bit adder: 

VHDL Testbench: 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
ENTITY TB_ADDER_4BIT IS 
END ENTITY TB_ADDER_4BIT; 
 
ARCHITECTURE behavior OF TB_ADDER_4BIT IS 
  SIGNAL A, B : STD_LOGIC_VECTOR(3 DOWNTO 0); 
  SIGNAL Cin  : STD_LOGIC; 
  SIGNAL Sum  : STD_LOGIC_VECTOR(3 DOWNTO 0); 
  SIGNAL Cout : STD_LOGIC; 
  COMPONENT ADDER_4BIT 
    PORT ( A     : IN  STD_LOGIC_VECTOR(3 DOWNTO 0); 
           B     : IN  STD_LOGIC_VECTOR(3 DOWNTO 0); 
           Cin   : IN  STD_LOGIC; 
           Sum   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 
           Cout  : OUT STD_LOGIC); 
  END COMPONENT; 
BEGIN 
  uut: ADDER_4BIT PORT MAP (A => A, B => B, Cin => Cin, Sum => Sum, Cout => Cout); 
 
  stim_proc: PROCESS 
  BEGIN 
    A <= "0001"; B <= "0010"; Cin <= '0'; WAIT FOR 10 ns; 
    A <= "1111"; B <= "0001"; Cin <= '1'; WAIT FOR 10 ns; 
    A <= "0101"; B <= "1010"; Cin <= '0'; WAIT FOR 10 ns; 
    WAIT; 



  END PROCESS; 
END ARCHITECTURE behavior; 
 

Verilog Testbench: 
module TB_ADDER_4BIT; 
  reg [3:0] A, B; 
  reg Cin; 
  wire [3:0] Sum; 
  wire Cout; 
 
  ADDER_4BIT uut (A, B, Cin, Sum, Cout); 
 
  initial begin 
    A = 4'b0001; B = 4'b0010; Cin = 0; #10; 
    A = 4'b1111; B = 4'b0001; Cin = 1; #10; 
    A = 4'b0101; B = 4'b1010; Cin = 0; #10; 
    $finish; 
  end 
endmodule 
 

Both testbenches stimulate the adder with different input values for A, B, and Cin, and verify 
that the output Sum and Cout are correct. 

 

3.6 Synthesis and Implementation 

After successfully simulating the design and ensuring its correctness, the next step is synthesis. 
The synthesis tool converts the hardware description into a netlist, mapping the design onto the 
FPGA's resources (logic blocks, I/O, etc.). 

●​ Synthesis Tools: Vivado (Xilinx), Quartus (Intel), or other FPGA vendor-specific tools.​
 

●​ Implementation: The synthesis tool performs placement and routing of the design, 
ensuring that the logic is correctly mapped to the FPGA.​
 

 

3.7 Conclusion 

This chapter covered the fundamentals of digital circuit design and implementation on FPGAs, 
focusing on how to translate design specifications into functional systems using VHDL and 



Verilog. You learned how to define, simulate, synthesize, and implement digital circuits on 
FPGA platforms. By practicing these concepts, you will gain the skills necessary to design more 
complex FPGA systems and contribute to real-world digital solutions. 
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