
Chapter 17: Decoupling of Equations of Motion

Introduction
In the study of structural dynamics and earthquake engineering, complex sys-
tems—such as multi-degree-of-freedom (MDOF) structures—require an analytical
framework to evaluate their dynamic behavior under seismic excitations. These
systems yield coupled differential equations of motion that are often challenging
to solve directly. The method of decoupling simplifies the analysis by trans-
forming the set of coupled equations into a set of independent equations. This
chapter focuses on the decoupling techniques using modal analysis, properties of
orthogonality, and diagonalization of mass and stiffness matrices. Understanding
these principles allows for efficient and accurate seismic analysis and design of
multi-storey structures.

17.1 Equations of Motion for MDOF Systems
For a linear elastic system with n degrees of freedom, the general form of the
equations of motion under external excitation (e.g., earthquake-induced base
motion) is:

[M ]{ü(t)} + [C]{u̇(t)} + [K]{u(t)} = {F (t)}

Where:

• [M ] is the mass matrix
• [C] is the damping matrix
• [K] is the stiffness matrix
• {u(t)} is the displacement vector
• {F (t)} is the force vector (including earthquake forces)

This is a system of n second-order coupled differential equations.

17.2 Need for Decoupling
Solving the above system directly is computationally expensive and often im-
practical, especially for large structures. Decoupling transforms the coupled
equations into n independent scalar equations, each corresponding to a mode of
vibration. This enables modal superposition techniques for dynamic analysis.
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17.3 Modal Transformation
Let the modal matrix [Φ] consist of n linearly independent eigenvectors:

{u(t)} = [Φ]{q(t)}

Where:

• [Φ] is the modal matrix containing eigenvectors as columns
• {q(t)} is the modal coordinate vector

Substituting into the equations of motion:

[M ][Φ]{q̈(t)} + [C][Φ]{q̇(t)} + [K][Φ]{q(t)} = {F (t)}

Multiplying both sides by [Φ]T :

[Φ]T [M ][Φ]{q̈(t)} + [Φ]T [C][Φ]{q̇(t)} + [Φ]T [K][Φ]{q(t)} = [Φ]T {F (t)}

Define:

• [M∗] = [Φ]T [M ][Φ]
• [C∗] = [Φ]T [C][Φ]
• [K∗] = [Φ]T [K][Φ]
• {F ∗(t)} = [Φ]T {F (t)}

If [Φ] is normalized such that:

[Φ]T [M ][Φ] = [I], [Φ]T [K][Φ] = [Ω2]

Then the modal equations become:

{q̈(t)} + [Ω2]{q(t)} = {F ∗(t)}

If damping is neglected or proportional (Rayleigh damping), the damping matrix
is also diagonalizable.

17.4 Orthogonality Conditions
The orthogonality properties of mode shapes are critical for decoupling. For
undamped systems:

• Mass Orthogonality:
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ϕT
i [M ]ϕj = 0 for i ̸= j

• Stiffness Orthogonality:

ϕT
i [K]ϕj = 0 for i ̸= j

These conditions imply that the modal matrix diagonalizes both the mass and
stiffness matrices, provided the system is classically damped or undamped.

17.5 Normalization of Mode Shapes
Mode shapes can be normalized with respect to mass:

ϕT
i [M ]ϕi = 1

This simplifies the modal equations further:

q̈i(t) + ω2
i qi(t) = F ∗

i (t)

Where ωi is the natural frequency of the ith mode.

17.6 Diagonalization of Matrices
• Stiffness matrix [K] and mass matrix [M] are symmetric and positive

definite.
• Eigenvalue problem:

([K] − λi[M ])ϕi = 0

• Eigenvectors ϕi are mutually orthogonal and can be used to construct the
transformation matrix [Φ].

Diagonalization results in:

[Φ]T [M ][Φ] = [I], [Φ]T [K][Φ] = [Ω2]

Where [Ω2] = diag(ω2
1 , ω2

2 , ..., ω2
n)
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17.7 Modal Superposition Method
Once decoupled, each scalar modal equation can be solved individually:

q̈i(t) + 2ξiωiq̇i(t) + ω2
i qi(t) = F ∗

i (t)

Where ξi is the damping ratio of the ith mode.

The total response of the system is then obtained by summing modal responses:

{u(t)} =
n∑

i=1
ϕiqi(t)

This is called the Modal Superposition Principle.

17.8 Modal Truncation
In practice, not all modes contribute significantly to the response, especially in
seismic analysis. Modal truncation involves retaining only the first few (usually
3–6) dominant modes, depending on their participation in the total response.

Criteria include:

• Modal Mass Participation Factor
• Cumulative Effective Mass Ratio

17.9 Special Case: Undamped Systems
For undamped systems, the modal equations are purely harmonic:

q̈i(t) + ω2
i qi(t) = F ∗

i (t)

These are second-order ODEs that can be solved using:

• Duhamel’s Integral
• Convolution Integral
• Laplace Transform (for arbitrary loading)
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17.10 Seismic Excitation: Base Acceleration Input
When the excitation is in the form of ground acceleration üg(t), the equations
become:

[M ]{ü(t)} + [C]{u̇(t)} + [K]{u(t)} = −[M ]{r}üg(t)

Where {r} is the influence vector (usually a vector of ones).

In modal coordinates:

q̈i(t) + 2ξiωiq̇i(t) + ω2
i qi(t) = −Γiüg(t)

Where Γi = ϕT
i [M ]{r} is the modal participation factor.

17.11 Numerical Example (Optional for Students)
A simple 3-storey shear building with lumped masses and stiffness values can be
analyzed to illustrate the decoupling process:

• Compute [M ], [K]
• Solve eigenvalue problem
• Normalize mode shapes
• Form modal transformation
• Decouple and solve modal equations
• Use modal superposition to obtain floor displacements

(Example omitted here but recommended for classroom or
assignment.)
17.12 Modal Participation Factors
The modal participation factor Γi quantifies how much each mode contributes
to the response of the system due to ground motion. It is calculated as:

Γi = ϕT
i [M ]{r}

ϕT
i [M ]ϕi

Where:

• ϕi: i-th mode shape vector
• [M ]: Mass matrix
• {r}: Influence vector (usually a vector of ones for ground motion in one

direction)
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This factor helps determine which modes are important for a particular loading
condition. Larger participation factors indicate higher contribution of the mode
to the total dynamic response.

17.13 Effective Modal Mass
The effective modal mass for the i-th mode is given by:

Meff,i = Γ2
i · ϕT

i [M ]ϕi

The total effective mass is used to check whether a sufficient number of modes
have been included in modal analysis. Cumulative effective modal mass ratios
are evaluated to determine if a sufficient portion (e.g., 90% or 95%) of the total
mass has been accounted for.

17.14 Orthogonal Properties with Damping
In the presence of damping, decoupling depends on the type of damping used:

• For classical (proportional) damping, the modal matrix still diagonal-
izes the damping matrix.

[C] = α[M ] + β[K]

Where α and β are constants.

• For non-classical damping, the damping matrix is not diagonalizable by
the modal matrix, and full decoupling may not be possible. In such cases,
complex modal analysis or state-space methods are used.

17.15 Complex Modes and Non-Proportional Damping
When damping is non-classical, the system can exhibit complex eigenvalues
and complex mode shapes. These are handled using state-space formulation:

Ẋ(t) = AX(t) + Büg(t)

Where X(t) includes displacement and velocity, and A is the system matrix that
includes damping effects.

In such systems, decoupling is not perfect, and modes may interact under seismic
excitation. Approximate or numerical methods are used to analyze the response.
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17.16 Coupling in Torsional and Asymmetric Systems
In real structures, particularly irregular buildings with asymmetry or torsional
stiffness, complete decoupling may not be possible:

• Plan irregularities and torsional modes lead to coupling between
translational and rotational DOFs.

• Modal analysis still applies but requires more modes and careful interpre-
tation.

• Modal coupling may cause torsional amplification, especially in seismic-
prone zones.

17.17 Use of Modal Analysis in Earthquake Response Spec-
tra Method
In practical earthquake engineering design, modal analysis is used in the re-
sponse spectrum method:

• Peak modal responses are computed using spectral acceleration values from
a design spectrum.

• Modal responses are combined using methods such as:

– Square Root of Sum of Squares (SRSS)
– Complete Quadratic Combination (CQC)

• These techniques assume decoupled modes and rely on accurate decoupling.

17.18 Limitations of Modal Decoupling
While modal decoupling is a powerful technique, it has limitations:

• Assumes linear elastic behavior
• Assumes classically damped systems
• Higher modes may still influence local responses
• Nonlinear behavior under strong ground motion is not captured
• Does not address duration, sequence, or directionality of earthquakes

directly

For nonlinear behavior or near-collapse conditions, time-history analysis or
nonlinear dynamic analysis is used instead.

7


	Chapter 17: Decoupling of Equations of Motion
	Introduction
	17.1 Equations of Motion for MDOF Systems
	17.2 Need for Decoupling
	17.3 Modal Transformation
	17.4 Orthogonality Conditions
	17.5 Normalization of Mode Shapes
	17.6 Diagonalization of Matrices
	17.7 Modal Superposition Method
	17.8 Modal Truncation
	17.9 Special Case: Undamped Systems
	17.10 Seismic Excitation: Base Acceleration Input
	17.11 Numerical Example (Optional for Students)
	(Example omitted here but recommended for classroom or assignment.)
	17.12 Modal Participation Factors
	17.13 Effective Modal Mass
	17.14 Orthogonal Properties with Damping
	17.15 Complex Modes and Non-Proportional Damping
	17.16 Coupling in Torsional and Asymmetric Systems
	17.17 Use of Modal Analysis in Earthquake Response Spectra Method
	17.18 Limitations of Modal Decoupling


