LECTURE 6

Indian Standard Soil Classification System:

Fine-grained soils are those for which more than 50% of the material has particle sizes less than 0.075 mm. Clay particles have a **flaky** shape to which water adheres, thus imparting the property of **plasticity**.

A plasticity chart, based on the values of liquid limit (W_L) and plasticity index (I_P) , is provided in ISSCS to aid classification. The 'A' line in this chart is expressed as $I_P = 0.73$ $(W_L - 20)$.

Depending on the point in the chart, fine soils are divided into **clays** (**C**), **silts** (**M**), or **organic soils** (**O**). The organic content is expressed as a percentage of the mass of organic matter in a given mass of soil to the mass of the dry soil solids. Three divisions of plasticity are also defined as follows.

Low plasticity	W_L < 35%
Intermediate plasticity	35% < W _L < 50%
High plasticity	$W_L > 50\%$

The 'A' line and vertical lines at W_L equal to 35% and 50% separate the soils into various classes.

For example, the combined symbol **CH** refers to clay of high plasticity.

Soil classification using group symbols is as follows:

Group Symbol	Classification
Coarse soils	ı
GW	Well-graded GRAVEL
GP	Poorly-graded GRAVEL
GM	Silty GRAVEL
GC	Clayey GRAVEL
SW	Well-graded SAND
SP	Poorly-graded SAND
SM	Silty SAND
SC	Clayey SAND
Fine soils	
ML	SILT of low plasticity
MI	SILT of intermediate plasticity
MH	SILT of high plasticity
CL	CLAY of low plasticity
CI	CLAY of intermediate plasticity
СН	CLAY of high plasticity
	_
OL	Organic soil of low plasticity
OI	Organic soil of intermediate plasticity
ОН	Organic soil of high plasticity
Pt	Peat

Activity:

"Clayey soils" necessarily do not consist of 100% clay size particles. The proportion of clay mineral flakes (< 0.002 mm size) in a fine soil increases its tendency to swell and shrink with changes in water content. This is called the **activity** of the clayey soil, and it represents the degree of plasticity related to the clay content.

Activity = (Plasticity index) /(% clay particles by weight)

Classification as per activity is:

Activity	Classification
< 0.75	Inactive
0.75 - 1.25	Normal
> 1.25	Active

Liquidity Index

In fine soils, especially with clay size content, the existing state is dependent on the current water content (\mathbf{w}) with respect to the consistency limits (or Atterberg limits). The **liquidity index (LI)** provides a quantitative measure of the present state.

$$LI = \frac{w - W_p}{I_p}$$

Classification as per liquidity index is:

Liquidity index	Classification
> 1	Liquid
0.75 - 1.00	Very soft
0.50 - 0.75	Soft
0.25 - 0. 50	Medium stiff
0 - 0.25	Stiff
< 0	Semi-solid

Visual Classification

Soils possess a number of physical characteristics which can be used as aids to identification in the field. A handful of soil rubbed through the fingers can yield the following:

SAND (and coarser) particles are visible to the naked eye.

SILT particles become dusty when dry and are easily brushed off hands.

CLAY particles are sticky when wet and hard when dry, and have to be scraped or washed off hands.

Worked Example:

The following test results were obtained for a fine-grained soil:

 $W_L\!\!=48\%$; $W_P\!=26\%$

Clay content = 55%

Silt content = 35%

Sand content = 10%

In situ moisture content = 39% = w

Classify the soil, and determine its activity and liquidity index

Solution:

Plasticity index, $I_P = W_L - W_P = 48 - 26 = 22\%$

Liquid limit lies between 35% and 50%.

According to the Plasticity Chart, the soil is classified as CI, i.e. clay of intermediate plasticity.

$$\Rightarrow Activity = \frac{I_P}{Clay \ content} = \frac{22}{25} = 0.88$$

$$LI = \frac{w - W_P}{I_P} = \frac{39 - 26}{22} = 0.59$$

The clay is of normal activity and is of soft consistency.