
Chapter 10: Duhamel Integral

Introduction
In the study of earthquake engineering, the dynamic response of structures to 
ground motion is a fundamental aspect. The Duhamel Integral provides a 
mathematical formulation for determining the response of a linear time-invariant 
(LTI) single-degree-of-freedom (SDOF) system to arbitrary dynamic loading. When 
the loading varies with time—such as in the case of an earthquake—analytical 
solutions to the equations of motion become complex. Duhamel’s integral is a 
powerful tool that allows us to express the response of the system in terms of a 
convolution integral of the excitation with the system’s impulse response function.

This chapter explores the theoretical background, derivation, and application of 
the Duhamel Integral in the context of structural dynamics and earthquake 
response analysis.

10.1 Equation of Motion for Linear SDOF System
Consider a single-degree-of-freedom (SDOF) system subjected to an external time-
varying force F (t). The general equation of motion is given by:

m ẍ( t)+c ẋ (t )+k x( t)=F (t)

Where:

 m = mass of the system
 c = damping coefficient
 k  = stiffness of the system
 x (t) = displacement as a function of time
 F (t) = applied external force

This second-order linear differential equation with constant coefficients governs 
the motion of the system under arbitrary loading.



10.2 Impulse Response Function
Before deriving the Duhamel Integral, we define the impulse response function 
h( t) as the response of the system to a unit impulse force applied at t=0:

F (t)=δ(t )

The solution x (t) for such an input is the unit impulse response, which depends 
on the damping condition of the system:

10.2.1 Underdamped Case (ζ<1)

Let ωn=√k /m be the natural circular frequency and ζ=
c

2√k m  be the damping ratio.

The impulse response function is given by:

h( t)= 1
mωd

e− ζ ωn t sin(ωd t)

Where ωd=ωn√1−ζ 2 is the damped natural frequency.

10.3 Derivation of Duhamel’s Integral
The system's response to a general force F (t) can be obtained using the principle 
of superposition and convolution. The idea is that any arbitrary force can be 
broken down into infinitesimally small impulses over time.

Using the superposition of the effects of these impulses, the total response is 
given by:

x (t)=∫
0

t

h(t − τ )F (τ )d τ

This is the Duhamel Integral, where:

 x (t) is the displacement response at time t
 h( t − τ) is the impulse response function
 F (τ ) is the force at time τ
 τ  is a dummy time variable



10.4 Physical Interpretation
Duhamel’s integral expresses the total system response as the weighted 
accumulation of the impulse responses over time. Each infinitesimal force F (τ )d τ 
applied at an earlier time τ  causes a delayed response that persists until time t , 
and the integral sums up these effects.

This is particularly useful in earthquake engineering, where the ground motion is 
often represented as a time-varying force or acceleration.

10.5 Application to Base Excitation (Earthquake Ground 
Motion)
In earthquake engineering, instead of an external force F (t), the system is 
subjected to ground acceleration üg(t), which induces relative motion in the 
structure.

The equation of motion in this case becomes:

m ẍ( t)+c ẋ (t )+k x( t)=−müg(t)

This is a base-excited SDOF system, where üg(t) is the ground acceleration input 
from an earthquake. Let’s denote:

F (t)=−müg(t)

Then using Duhamel’s integral:

x (t)=−∫
0

t

h(t −τ )müg(τ )d τ

Or:

x (t)=− 1
ωd

∫
0

t

e−ζ ωn (t −τ )sin [ωd (t − τ)] üg(τ )d τ

This provides a mathematical formulation to compute the relative displacement 
response of a structure to earthquake ground motion.



10.6 Numerical Evaluation of Duhamel Integral
In practice, earthquake records are available in digital form, so the integral must 
be evaluated numerically. Numerical techniques like:

 Trapezoidal Rule
 Simpson’s Rule
 Step-by-step integration (e.g., Newmark’s method)

are used to evaluate the integral over discrete time intervals.

Let Δt  be the time step, and the time history be sampled at t i=i Δt, then:

x (t i)≈−∑
j=0

i
1
ωd
e−ζ ωn (t i−t j)sin [ωd(t i−t j)] üg(t j)Δ t

This approach is used to generate response spectra and time-history plots for 
structural analysis.

10.7 Duhamel’s Integral for Zero Initial Conditions
The derivation assumes zero initial displacement and velocity:

x (0)=0 , ẋ (0)=0

For non-zero initial conditions, an additional homogeneous solution must be 
added, which accounts for the free vibration response of the system. In 
earthquake engineering, however, structures are generally assumed to be at rest 
before the earthquake, so this assumption holds true in most cases.

10.8 Advantages and Limitations
Advantages:

 Provides an exact analytical solution for linear systems under arbitrary 
forcing.

 Fundamental to the formulation of response spectrum analysis.
 Applicable to both force and base excitation problems.

Limitations:
 Valid only for linear and time-invariant systems.



 Requires knowledge of the impulse response function, which may be 
difficult for complex systems.

 Not suitable for nonlinear systems or systems with time-varying properties.

10.9 Extension to Multi-Degree-of-Freedom (MDOF) 
Systems
While Duhamel’s integral is most commonly applied to SDOF systems, it can be 
extended to linear MDOF systems using modal analysis. Each mode is treated as a 
separate SDOF system, and their individual responses (via Duhamel's integral) are 
superimposed to find the total system response.

x (t)=∑
r=1

n

ϕrqr (t)

Where:

 ϕr = mode shape
 qr(t) = modal coordinate obtained using Duhamel's integral for each mode

10.10 Convolution Integral and System Linearity
The Duhamel integral is a direct application of the convolution integral, which is 
valid only for linear time-invariant (LTI) systems. The mathematical form of 
convolution:

x (t)=∫
0

t

h(t − τ )F (τ )d τ

implies that the system output is the convolution of the impulse response h( t) 
and the input function F (t). The principle of superposition must hold, which is 
why this integral is not suitable for nonlinear systems.

This foundational idea is also critical in structural control, digital signal processing, 
and filtering in vibration analysis.



10.11 Alternative Representation using Convolution 
Theorem (Laplace Domain)
Using Laplace Transforms, the convolution in time domain corresponds to 
multiplication in the Laplace domain:

Let:

 X (s) = Laplace Transform of displacement x (t)
 H (s) = Laplace Transform of impulse response h( t)
 F (s ) = Laplace Transform of input force F (t)

Then:

X (s)=H (s)⋅F (s)

Taking the inverse Laplace transform gives x (t), the time-domain response. This 
method is especially useful for solving problems with known Laplace pairs and 
handling complicated initial conditions.

10.12 Response of Systems with Different Damping Levels
The system response via Duhamel's integral changes significantly based on the 
damping ratio ζ . Three cases are considered:

10.12.1 Underdamped System (ζ<1)

Oscillatory decay with impulse response function involving sine terms.

10.12.2 Critically Damped System (ζ=1)

Impulse response:

h( t)= t
m
e−ωn t

System returns to equilibrium fastest without oscillating.

10.12.3 Overdamped System (ζ>1)

Impulse response includes two exponential terms with no oscillation. The system 
returns to equilibrium slowly.



Each damping case affects the integral formulation and the transient behavior of 
the structure differently.

10.13 Energy Dissipation and Duhamel Response
The energy dissipated due to damping during vibration can be indirectly 
evaluated using the Duhamel response. For any time-dependent force F (t), the 
instantaneous power transferred into the system is:

P(t )=F( t)⋅ ẋ (t )

Integrating this power over time provides the total work done on the system, part 
of which is dissipated through damping. This analysis is helpful in estimating how 
much of earthquake energy is absorbed by damping devices or structural 
elements.

10.14 Practical Application: Earthquake Ground Motion 
Records
When applying Duhamel’s integral to real-life earthquake ground motion, the 
input üg(t) is obtained from seismographs in discrete time form (acceleration vs. 
time). The structural engineer uses this data to compute:

 Displacement x (t)
 Velocity ẋ (t)
 Acceleration ẍ (t)

via numerical evaluation of the integral. The peak responses are used in design 
spectra and seismic qualification.

10.15 Programming Implementation (MATLAB/Python)
The Duhamel integral is often implemented computationally. A typical 
implementation involves:

 Discretizing the time vector.
 Using the known üg(t) or F (t) values.



 Calculating h( t) at each time step.
 Applying numerical integration (e.g., numpy.convolve in Python or conv in 

MATLAB).

Sample code is often written to generate time-history plots, peak displacement, 
and response spectra.

10.16 Limitations in Earthquake Engineering Practice
While powerful, Duhamel’s integral has the following limitations:

 Assumes linearity of structure (no material or geometric nonlinearity).
 Not suitable for inelastic behavior—plastic hinges, yielding, cracking, etc.
 Requires zero initial conditions for simplified derivation.
 Requires extensive computation for real, multi-degree-of-freedom buildings 

unless modal superposition is applied.

For nonlinear systems, time-history integration methods like Newmark-beta or 
Wilson-θ are preferred.
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