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Similarity in Properties of Stress and Strain Tensors

Hello everyone! Welcome to Lecture 14! In this lecture, we will look at the similarities between
stress and strain tensors and their properties.

1 Similarity between Stress and Strain tensors (start time: 00:22)

Let us list the formulae of stress and strain components derived earlier to observe the similarities
between the two.On the stress side, we have normal (σnn) and shear (τmn) components of traction while

on the strain side, we have longitudinal (ϵnn) and shear (γmn) strains as shown below

We can notice the similarity in above formulas. We also defined the strain tensor ϵ to be

(1)

Thus, the strain tensor is also symmetric just like the stress tensorand stress and strain formulae are also
similar. This means that we can apply all the properties derived for stress tensor to strain tensor. We

discuss themnow

1.1 Principal directions and principal components (start time: 04:42)

We haddiscussed about principal stress planes and principal stress components earlier. Likewise,we can

also define principal strain directions (not planes) and principal strain components. We know that at a
point, principal stress planes are the planes on which the normal component of traction is
maximized/minimized. The value of the normal component of traction on these planes are principal

stress components. Similarly, at a point in the body, out of the numerous line elements, the directions
of those line elements that experiencemaximum/minimum longitudinal strain are called principal strain
directions. The valuesof longitudinal strain in these directions are called principal strain components. To
find them, we can follow the same approach that we followed for finding principal stress planes and

principal stress components. We find the eigenvectors and eigenvalues of the strain tensor to obtain
principal strain directions and principal strain components.
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1.2 Diagonality of matrix form in principal coordinate system (start time: 07:48)

We know that the stress matrix in the coordinate systemof principal stress directions becomes diagonal.
Similarly, whenwe represent the strain matrix in the coordinate systemof the principal strain directions,
it will become a diagonal matrix. As the off-diagonal components will be zero, this means that if we take
the two line elementsdirectedalong the principal strain directions, there will not be any change of angle

between them. To visualize this, we can consider a cuboid whose face normals are along the principal
strain directions (given by the eigenvectors of the strain tensor) as shown on the left in Figure 1. Here
̂1,̂2,̂3 represent principal strain directions. The cuboid gets deformed as shown on the right in Figure

1. As the angle between line elements along principal directions does not change, the cuboid only
changes its size but the deformed shape is still a cuboid.

Figure 1: A cuboid whose face normals are along principal strain directions in the reference

configuration deforms such that it still retains its cuboidal shape

1.3 Maximum shear (start time: 10:45)

We can also maximize shear strain at a point just like we maximized the shear component of traction.

We had found in previous lectures that the planes on which the shear component of traction
maximized/minimized lie at an angle of 45◦ from the principal planes. Similarly, the pair of perpendicular
line elements that undergoes maximum change in angle (or maximum shear strain) will be directed at

45◦ from principal strain directions. This is shown in Figure 2.
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Figure 2: Line elementdirections corresponding to maximum shear strain ( ̃1,̃2) shown with respect to
the principal strain directions (̂1,̂2)

1.4 Mohr’s circle (start time: 13:13)

We can also think of Mohr’s circle for strain. Mohr’s circle for stress gave the value of normal traction
(σ) and shear traction (τ) onan arbitrary plane. Similarly, if we know the value of longitudinal strain along
two perpendicular directions say e1 and e2 and also know shear strain between e1 and e2, then one can

use Mohr’s circle for strain to obtain longitudinal and shear strain for two perpendicular line elements
which are oriented at angle θ relative to e1 and e2 pairs. The strain plane will have its axes as longitudinal
strain () and shear strain (γ). However, as the formula for shear strain has an extra factor of 2 when

compared with the formula for shear stress,we need to keep the vertical axis in strain plane as


2
. This

will permit us to draw Mohr’s circle for strain in exactly the same manner as we draw Mohr’s circle for

stress.We had seenwhile discussing Mohr’s circle for stress that it can be drawn only whenat least one
coordinate axis is along the principal stress direction. Likewise, for Mohr’s circle for strain also, we can
draw the circle only when at least one coordinate ax is is along a principal strain direction. For now let’s

consider that the third coordinate direction is along a principal strain direction. Thus, the strain matrix
in such a coordinate system will look as follows:

(2)

For drawing the Mohr’s circle, we need to find out the center and the radius of the circle. We first draw
the point corresponding to line elements along x and y directions. Thus, wemark the point ( ) as

shown in Figure 3. The center of the circle will be at the mid point of ϵxxand ϵyy on the axis. Now,we have
the center of the circle and a point on the circle ( ). Thus, we can get the radius by joining them as
shown in Figure 3. We can then draw the circle itself with the center and radius known.We can extract

a lot of information from this circle just like we had seen in the stress case. For example, the principal
strain componentswill be obtained from the points where the circle cuts the axis (shown in red crossed
circles in Figure 3). Thus, we have

Principal strain components: (3)
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Here, R can be foundby applying Pythagoras theoremto the right angled triangle shown.

Figure 3: Mohr’s circle for strain

Also, maximum shear strain (γmax) can be obtained from theMohr’s circle. is equal to the radius
of the Mohr’s circle. Thus

γmax= 2R (4)

Finally, we can find longitudinal and shearstrains for any arbitrary line elements. Forexample, to get the
longitudinal strain for a line element which makes an angle θ with the e1 direction in the clockwise
direction, we need to go anticlockwise by 2θ on the Mohr’s circle from ( ). For getting the

shear strain, we should remember that we need to multiply the value obtained fromMohr’s circle graph
by 2.

1.5 Invariants (start time: 20:50)

Just like we have invariants of the stress tensoras I1, I2 and I3, we also have invariants of the strain tensor
denoted by J1, J2 and J3. They are exactly analogous to each other. J1 represents the trace of the strain
tensor (just like I1 represents the trace of the stress tensor). J3 represents the determinant of the strain

tensor (just like I3 represents the determinant of the stress tensor).

1.6 Decomposition of the tensors (start time: 22:08)

We had learnt about the decomposition of the stress tensor into hydrostatic and deviatoric parts. We

can also decompose the strain tensor into two parts in a similar way as shown below:
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(5)

The first part is proportional to identity. It is analogous to the hydrostatic part of stress and is called the
volumetric strain tensor. This part is responsible for change in volume and does not affect the shape.
The second part is analogous to stress deviator and is called strain deviator. This part is responsible for
distorting the body. The trace of the second part is zero by construction.

2 An alternate physical meaning of shear strain (start time: 23:58)

We know already that shear strain denotes change in angle between two perpendicular line elements.
There is another physical interpretation of shear strain. Let us consider the following displacement

function:

u1 = αX2, u2 = 0, u3 = 0 (6)

and understand its underlying deformation. After deformation, the position vector of a typical point in

the body changes as follows:

x1 = X1 + αX2, x2 = X2, x3 = X3. (7)

Think of a rectangular slice in the reference configuration of the body in e1− e2 plane (see Figure 4). This

slice deforms toa parallelogram according to (6) as shown in the figure inducing change in angle between
its two perpendicular edges. Therefore, the displacement prescribed by equation (6) is also called shear
displacement. To measure the amount of shear, we can directly notice from Figure 4 that

(for small α) (8)
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Figure 4: Undeformedand deformedslices of a body undergoing deformation as prescribed by

equation (6)

Alternatively, using formula for shear, we can also see

(9)

Let us now imagine a plane section of the body in (e1 − e3) plane. These planes have constant X2
coordinate. According to (6), all points in this plane displace by the same amount in e1 direction. Hence,

such planes do not deformbut simply rigidly translate along e1 by αX2. One can, in fact, think of infinite
such planes all parallel to each other having different X2 coordinate but a given plane having the same
X2 coordinate for all its points (also see Figure 5). The plane having X2 = 0 (lowermost plane in Figure 5)

will have the same reference and deformed position. However, higher the X2 coordinate of a plane,
higher is the drift/translation in e1 direction. This can be visualized as sliding of a pack of cards in the
plane of the card itself. This is an alternate physical interpretation of shearing: sliding of parallel planes

in a direction perpendicular to the plane normal. Here, sliding is along e1 direction which is
perpendicular to e2 (the plane normal). We can also let the planes slide in an arbitrary direction
perpendicular to e2other than e1 and that will also be shear. The angle β in Figure 4 and 5 is the measure

of intensity of sliding of parallel planes which also equals the shear strain value.

111



reference configuration deformedconfiguration

Figure 5: Shearing strain visualised as sliding of parallel planes having normal n in the direction m: n =
e2 and m = e1 for the displacement function in (6)

Thus we have another physical interpretation of shear strain:

3 Strain Compatibility Conditions (start time: 37:16)

We know that the strain matrix in (e1,e2,e3) coordinate system is

. (11)

Because of symmetry, it has six different componentswhich are functions of (X,Y,Z) in general. Suppose,
instead of obtaining strain matrix from the derivative of displacement functions, we directly write it by

choosing six arbitrary functions for its components, i.e.,

(12)

Will such a strain matrix correspond to any displacement function? The answer is NO! Basically, using
strain-displacement relation in (11), if we integrate the six arbitrary functions to obtain the three
displacement components,wemay not obtain a consistent displacement function. For example, think of

integrating ϵXX (X,Y,Z) in X to obtain uX and then integrating ϵYY (X,Y,Z) in Y to obtain uY, the resulting
function neednot satisfy the prescribed function for ϵXY. Physically, it may happen that the displacement
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so obtained is such that it leads to two parts of a body overlapping with each otheror getting separated

as in Figure 6. Thus, there has to be some constraint on the six strain functions which are collectively
called strain compatibility condition. Thus, a general symmetric matrix does not necessarily representa
strain matrix until it satisfies those strain compatibility conditions.

Figure 6: Illustration of a displacement function obtained from an arbitrary symmetric matrix leading to

discontinuities and overlaps in the body

3.1 Another interpretation (start time: 46:13)

Another way to look at compatibility condition is that when we integrate a given strain matrix along an

arbitrary path in the reference configuration of a body, the displacement so obtained should justdepend
on the endpoints of the path and not on the actual path of integration. For example, supposewe start
at a point A shown in Figure 7 and want to find the displacement of point B. We can go through different

paths and integrate the strain components along the path to find the displacement of B.
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Figure 7: Two possible paths to go from point A to point B in the reference configuration of a body

Regardless of the path followed, the displacement should come out to be the same because the final

point is the same and it must have a unique displacement. In other words, the integration has to be path
independentand the strain compatibility condition ensures that. There is a rigorous mathematical proof
to obtain strain compatibility conditions but that is out of scope of this class. There are six compatibility

conditions which can be divided into two sets. The first set is

(13)

(14)

(15)

We can also verify them by plugging in strain-displacement relation, e.g., consider the LHS of equation
(13):

(16)

The second set of compatibility conditions is
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(17)

(18)

(19)

3.2 Special Case (start time: 52:07)

There is a specific situation where five of the compatibility conditions get satisfied automatically.
Consider the following situation:

(20)

This special case is also called plane strain condition. For such a case, it is easy to check that five of the
compatibility conditions (all exceptequation (13)) are automatically satisfied. So for this special situation,

only the following compatibility condition needs to be checked:

(21)

3.3 An example (start time: 54:36)

Suppose the strain components are given by the following functions:

(22)

This case satisfies the special condition defined in (20). To check the compatibility condition (21), we first
obtain the required derivatives of strain components, i.e.,

(23)
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Uponplugging them into (21), we see that the compatibility condition is indeed satisfied. Thus, the strain

matrix prescribed is a valid one and a physical displacement function can be extracted from it.
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