
Chapter 30: Introduction to Frameworks (e.g., Spring

Basics)

Introduction

As software applications grow in size and complexity, developers increasingly rely on
frameworks to streamline development, enforce best practices, and manage complexity.
Frameworks provide reusable software modules and define the skeleton for applications so that

developers can focus on writing business logic rather than reinventing core infrastructure.

One of the most popular frameworks in enterprise Java development is the Spring Framework.

It provides a comprehensive programming and configuration model for modern Java-based
enterprise applications — on any kind of deployment platform.

In this chapter, we will explore the concept of frameworks, understand why they're important,

and dive into the basics of the Spring Framework, one of the most widely-used Java frameworks
in the industry today.

30.1 What is a Framework?

Definition:

A framework is a reusable set of libraries or classes for a software system or subsystem. It
provides generic functionality that can be selectively overridden or extended by user code to
build specific functionality.

Key Characteristics of Frameworks:

• Inversion of Control (IoC): Framework controls the program flow, not the developer.

• Reusable and Modular: Code is reusable and organized into modules.

• Extensible: Developers can add new functionalities by extending framework

components.

• Integrated Tooling Support: Most frameworks are supported by IDEs, build tools, and

testing tools.

Comparison with Libraries:

Feature Library Framework

Control Flow Developer controls flow Framework controls flow (IoC)

Extensibility Less extensible Highly extensible

Structure No imposed structure Enforces a design structure

Examples Apache Commons, Gson Spring, Angular, Django

30.2 Need for Frameworks in Software Development

• Code Reusability

• Faster Development Time

• Reduced Boilerplate Code

• Security and Scalability

• Standardization

• Focus on Business Logic

• Improved Testing and Debugging Support

30.3 Overview of Popular Java Frameworks

Framework Purpose

Spring General-purpose enterprise Java

Hibernate ORM (Object-Relational Mapping)

Struts Web application framework

JSF Component-based UI framework

Play Reactive web applications

Among these, Spring is the most flexible and widely adopted.

30.4 Introduction to the Spring Framework

What is Spring?

Spring is a lightweight, open-source framework for developing Java applications. It provides
comprehensive infrastructure support for developing robust Java applications easily and rapidly.

Spring Core Concepts:

• Dependency Injection (DI)

• Inversion of Control (IoC)

• Aspect-Oriented Programming (AOP)

• Spring MVC for web apps

• Spring Boot for simplified setup

Spring Ecosystem Includes:

• Spring Core

• Spring MVC

• Spring Boot

• Spring Data

• Spring Security

• Spring Cloud

30.5 Core Concepts of Spring

30.5.1 Inversion of Control (IoC)

IoC is a design principle in which the control of object creation and dependency management is
transferred from the application code to the framework.

Example:

Without IoC:

Car car = new Car(new Engine());

With IoC:

<bean id="engine" class="com.example.Engine"/>
<bean id="car" class="com.example.Car">
 <constructor-arg ref="engine"/>
</bean>

Spring creates and injects dependencies automatically.

30.5.2 Dependency Injection (DI)

A type of IoC where dependencies are provided to a class instead of being created inside the

class.

Types of DI:

• Constructor Injection

• Setter Injection

• Field Injection (via Annotations)

Example:

@Component
public class Car {
 @Autowired
 private Engine engine;
}

30.5.3 Spring Beans and Container

• Bean: A Spring-managed object.

• Bean Factory/ApplicationContext: Container responsible for instantiating, configuring,

and assembling beans.

30.5.4 Spring Configuration

XML-based Configuration

<bean id="car" class="com.example.Car"/>

Annotation-based Configuration

@Configuration
public class AppConfig {
 @Bean
 public Car car() {
 return new Car();
 }
}

Java-based Configuration

@SpringBootApplication
public class MyApp {
 public static void main(String[] args) {
 SpringApplication.run(MyApp.class, args);
 }
}

30.6 Introduction to Spring Boot

Spring Boot simplifies the setup and development of new Spring applications by:

• Eliminating boilerplate configurations

• Embedding web servers like Tomcat

• Providing production-ready features like metrics and health checks

Example Spring Boot Application:

@SpringBootApplication
public class DemoApplication {
 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
}

Spring Boot Features:

• Autoconfiguration

• Starter dependencies

• Spring Boot CLI

• Actuator for monitoring

30.7 Spring MVC Basics

Spring MVC is a web framework built on the Servlet API and provides Model-View-Controller
architecture.

Core Components:

• DispatcherServlet: Central controller

• Controller: Handles requests

• Model: Data

• View: Presentation (JSP, Thymeleaf)

Example:

@Controller
public class HomeController {
 @GetMapping("/home")
 public String home(Model model) {
 model.addAttribute("message", "Welcome to Spring!");
 return "home"; // maps to home.jsp
 }
}

30.8 Real-World Applications Using Spring

• Banking Systems – for secure and scalable transactions

• E-commerce Portals – such as Amazon backend services

• Enterprise Resource Planning (ERP) systems

• Social Media Applications

• APIs and Microservices using Spring Boot and Spring Cloud

30.9 Advantages of Using Spring

• Modular and layered architecture

• Testable and maintainable code

• Active community and excellent documentation

• Compatible with other Java frameworks (e.g., Hibernate)

• Encourages best practices (e.g., SOLID, DRY)

30.10 Challenges and Considerations

• Initial learning curve

• Complex configurations for advanced cases

• Requires proper version management

• Overhead for small projects if not using Spring Boot

Summary

Frameworks are essential in modern application development to promote best practices, improve
productivity, and ensure maintainability. Among them, Spring stands out in the Java ecosystem

due to its modularity, flexibility, and wide adoption.

By leveraging Inversion of Control, Dependency Injection, and other core features, Spring
empowers developers to write clean, testable, and scalable code. With the introduction of Spring

Boot, the barrier to entry has been lowered, making it accessible even for beginners in enterprise
application development.

Understanding the basics of Spring is a crucial step for any aspiring Java developer, especially
in the context of enterprise and web-based applications.

