
Chapter 21: Java I/O and NIO

Introduction

Efficient data input and output operations are crucial in any programming language, and Java
provides a robust set of APIs to handle them. Java I/O (Input/Output) and NIO (New

Input/Output) are the two primary frameworks used to perform file, stream, and buffer
operations. This chapter dives deep into both classic Java I/O and the newer, more performant
Java NIO package introduced in JDK 1.4, which offers advanced features such as non-blocking

I/O, memory-mapped files, channels, and selectors.

21.1 Java I/O (java.io Package)

21.1.1 Streams in Java

Java I/O uses streams to read and write data:

• Byte Streams – For handling raw binary data (classes under InputStream and

OutputStream).

• Character Streams – For handling textual data (classes under Reader and Writer).

Common Byte Stream Classes

Class Description

FileInputStream Reads raw bytes from a file

FileOutputStream Writes raw bytes to a file

BufferedInputStream /
BufferedOutputStream

Wraps streams for efficient buffered I/O

DataInputStream / DataOutputStream Reads/writes Java primitives in a machine-

independent way

Common Character Stream Classes

Class Description

FileReader / FileWriter Reads/writes characters from/to a file

BufferedReader / BufferedWriter Buffers character streams

PrintWriter Conveniently writes formatted text

21.1.2 File Class

The java.io.File class represents a file or directory path in an abstract manner.

File file = new File("example.txt");
if (file.exists()) {

 System.out.println("File exists at: " + file.getAbsolutePath());
}

21.1.3 Serialization

Serialization allows saving the state of an object.

ObjectOutputStream out = new ObjectOutputStream(new
FileOutputStream("data.ser"));
out.writeObject(someObject);
out.close();

21.2 Java NIO (java.nio Package)

Java NIO offers a more flexible and scalable I/O framework using buffers and channels.

21.2.1 Key Concepts in NIO

• Buffers – Containers for data of a specific primitive type.

• Channels – Bi-directional data transfer between buffers and I/O devices.

• Selectors – Handle multiple channels using a single thread (non-blocking I/O).

• Paths and Files – Introduced in Java 7 (java.nio.file.*) to replace File.

21.2.2 Buffer Classes

Buffers are used in NIO to hold data:

• ByteBuffer, CharBuffer, IntBuffer, etc.

Example: Using ByteBuffer

ByteBuffer buffer = ByteBuffer.allocate(1024);
buffer.put((byte) 123);
buffer.flip(); // prepare for reading
byte b = buffer.get();

21.2.3 Channels

Channels represent open connections to I/O entities such as files or sockets. Common channels
include:

• FileChannel

• SocketChannel

• DatagramChannel

• ServerSocketChannel

Reading File Using FileChannel

RandomAccessFile file = new RandomAccessFile("data.txt", "r");
FileChannel channel = file.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
channel.read(buffer);

21.2.4 Selectors

Selectors are used for non-blocking I/O to monitor multiple channels using a single thread.

Selector Usage Example

Selector selector = Selector.open();
ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(false);
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

while (true) {
 selector.select(); // blocks until an event
 Set<SelectionKey> keys = selector.selectedKeys();
 // Iterate and handle I/O events
}

21.2.5 Path, Paths, and Files (Java 7+)

The java.nio.file package improves file handling over java.io.File.

Example: Reading a File

Path path = Paths.get("example.txt");
List<String> lines = Files.readAllLines(path, StandardCharsets.UTF_8);

21.3 Comparison: Java I/O vs NIO

Feature Java I/O Java NIO

Data Handling Stream-based Buffer-based

Blocking

Mode
Always blocking Non-blocking supported

Performance Slower for large files or concurrent

I/O

Faster, scalable for large data

File Access Limited with File class Advanced operations with Path, Files,

etc.

Thread Usage One thread per stream One thread for multiple channels via

selectors

21.4 Advanced NIO: Memory-Mapped Files

Memory-mapped files allow reading large files by mapping them into memory.

FileChannel channel = FileChannel.open(path, StandardOpenOption.READ);
MappedByteBuffer buffer = channel.map(FileChannel.MapMode.READ_ONLY, 0,

channel.size());

21.5 Java NIO.2 Enhancements (Java 7+)

• WatchService API: Monitors file system events (like file creation, modification).

• Symbolic Links: Better support.

• Improved Exception Handling: e.g., AccessDeniedException,

NoSuchFileException.

Example: Watching File Changes

WatchService watcher = FileSystems.getDefault().newWatchService();
Path dir = Paths.get("/some/dir");
dir.register(watcher, StandardWatchEventKinds.ENTRY_CREATE);

WatchKey key = watcher.take();
for (WatchEvent<?> event : key.pollEvents()) {
 System.out.println("New file: " + event.context());
}

Summary

Java I/O and NIO are powerful libraries for handling input and output operations, but they cater
to different use cases. While I/O is simpler and stream-based, NIO is designed for high

performance, scalability, and flexibility using buffers and channels. Understanding when to use
I/O versus NIO is crucial for developing efficient Java applications. NIO.2 further improves file

operations with modern file APIs and event watching capabilities.

