Chapter 21: Javal/Oand NIO

Introduction

Efficient data input and output operations are crucial in any programming language, and Java
provides a robust set of APIsto handle them. Java I/O (Input/Output) and N1O (New
Input/Output) are the two primary frameworks used to perform file, stream, and buffer
operations. This chapter dives deep into both classic Java 1/0O and the newer, more performant
Java N10 package introduced in JDK 1.4, which offers advanced features such as non-blocking
1/0, memory-mapped files, channels, and selectors.

21.1Java 1/0 (java.io Package)

21.1.1 Streamsin Java
Java 1/O uses streams to read and write data:

e Byte Streams — For handling raw binary data (classes under InputStream and
OutputStream).
e Character Streams — For handling textual data (classes under Reader and Writer).

Common Byte Stream Classes

Class Description

FileInputStream Reads raw bytes from a file

FileOutputStream Writes raw bytes to a file

BufferedInputStream / Wraps streams for efficient buffered 1/0

BufferedOutputStream

DataInputStream /DataOutputStream Reads/writes Java primitives in a machine-
independent way

Common Character Stream Classes

Class Description

FileReader / FileWriter Reads/writes characters from/to a file

BufferedReader / BufferedWriter | Buffers character streams

PrintWriter Conveniently writes formatted text

21.1.2 File Class

The java.io.File class represents a file or directory path in an abstract manner.

File file = new File("example.txt");
if (file.exists()) {




System.out.println("File exists at: " + file.getAbsolutePath());
}

21.1.3 Serialization

Serialization allows saving the state of an object.

ObjectOutputStream out = new ObjectOutputStream(new
FileOutputStream("data.ser"));
out.writeObject(someObject);

out.close();

21.2 Java NIO (java.nio Package)

Java N10O offers a more flexible and scalable 1/0 framework using buffersand channels.

21.2.1 Key Conceptsin NIO

Buffers — Containers for data of a specific primitive type.

Channels — Bi-directional data transfer between buffersand 1/O devices.
Selectors — Handle multiple channels using a single thread (non-blocking 1/O).
Paths and Files — Introduced inJava 7 (java.nio.file.*) toreplace File.

21.2.2 Buffer Classes
Buffersare used in N1O to hold data:

e ByteBuffer, CharBuffer, IntBuffer, etc.

Example: Using ByteBuffer

ByteBuffer buffer = ByteBuffer.allocate(1024);
buffer.put((byte) 123);

buffer.flip(); // prepare for reading

byte b = buffer.get();

21.2.3 Channels

Channels represent open connections to 1/O entities such as files or sockets. Common channels
include:

e FileChannel

e SocketChannel

e DatagramChannel

e ServerSocketChannel



Reading File Using FileChannel

RandomAccessFile file = new RandomAccessFile("data.txt", "r");
FileChannel channel = file.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(1024);

channel.read(buffer);

21.2.4 Selectors

Selectors are used for non-blocking 1/0 to monitor multiple channels using a single thread.

Selector Usage Example

Selector selector = Selector.open();

ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(false);

serverChannel.register (selector, SelectionKey.OP_ACCEPT);

while (true) {
selector.select(); // blocks until an event
Set<SelectionKey> keys = selector.selectedKeys();
// Iterate and handle I/0 events

21.2.5 Path, Paths, and Files (Java 7+)
The java.nio.file package improves file handling over java.io.File.

Example: Reading a File
Path path = Paths.get("example.txt");
List<String> lines = Files.readAllLines(path, StandardCharsets.UTF_8);

21.3 Comparison: Java I/O vs NIO

Feature Java 1/0 Java N1O

DataHandling | Stream-based Buffer-based

Blocking Always blocking Non-blocking supported

Mode

Performance Slower for large files or concurrent | Faster, scalable for large data

1/0

File Access Limited with File class Advanced operations with Path, Files,
etc.

Thread Usage | One thread per stream One thread for multiple channels via
selectors




21.4 Advanced NIO: Memory-Mapped Files

Memory-mapped files allow reading large files by mapping them into memory.

FileChannel channel = FileChannel.open(path, StandardOpenOption.READ);
MappedByteBuffer buffer = channel.map(FileChannel.MapMode.READ_ONLY, O,

channel.size());

21.5 Java NI0O.2 Enhancements (Java 7+)

o WatchService API: Monitors file system events (like file creation, modification).
e Symbolic Links: Better support.

e Improved Exception Handling: e.g., AccessDeniedException
NoSuchFileException.

Example: Watching File Changes

WatchService watcher = FileSystems.getDefault().newWatchService();
Path dir = Paths.get("/some/dir");

dir.register(watcher, StandardWatchEventKinds.ENTRY_CREATE);

WatchKey key = watcher.take();
for (WatchEvent<?> event : key.pollEvents()) {
System.out.println("New file: " + event.context());

}

Summary

Java /0 and N10O are powerful libraries for handling input and output operations, but they cater
to different use cases. While 1/0O is simpler and stream-based, NI1O is designed for high
performance, scalability, and flexibility using buffers and channels. Understanding when to use
1/0 versus NIO is crucial for developing efficient Java applications. N10.2 further improves file
operations with modern file APlsand event watching capabilities.




