
Chapter 15: Collections and Generics

15.0 Introduction

In real-world applications, working with groups of objects is common—whether it's storing
customer records, processing transactions, or managing a list of tasks. Java provides a robust

Collections Framework to handle such tasks efficiently. Combined with Generics, which
enable type-safe code and eliminate runtime errors caused by type casting, these features are
indispensable for modern Java programming.

This chapter explores Java’s Collections Framework and Generics in detail. You'll understand
their architecture, how to use them effectively, and best practices for ensuring performance and

type safety.

15.1 The Java Collections Framework Overview

15.1.1 What is a Collection?

A Collection is an object that groups multiple elements into a single unit. It is used to store,

retrieve, manipulate, and communicate aggregate data.

15.1.2 Core Interfaces

• Collection<E>

• List<E>

• Set<E>

• SortedSet<E>

• NavigableSet<E>

• Queue<E>

• Deque<E>

• Map<K, V>

• SortedMap<K, V>

• NavigableMap<K, V>

Each interface defines operations and contracts for specific types of collections.

15.2 List Interface and Its Implementations

15.2.1 List Interface

A List is an ordered collection (also known as a sequence) that may contain duplicate elements.

15.2.2 Implementations

• ArrayList

o Dynamic array-based.

o Fast random access.

• LinkedList

o Doubly-linked list.

o Efficient insertions/deletions.

• Vector

o Synchronized.

• Stack

o LIFO stack built on Vector.

15.2.3 Key Methods

• add(E e)

• remove(Object o)

• get(int index)

• set(int index, E element)

• iterator(), listIterator()

15.3 Set Interface and Its Implementations

15.3.1 Set Interface

A Set is a collection that does not allow duplicate elements.

15.3.2 Implementations

• HashSet

o Backed by a hash table.

o Unordered.

• LinkedHashSet

o Maintains insertion order.

• TreeSet

o Sorted in natural or comparator order.

15.4 Queue and Deque

15.4.1 Queue Interface

Used for FIFO operations.

• add(), remove(), peek(), poll()

15.4.2 Deque Interface

Double-ended queue allowing FIFO and LIFO.

• addFirst(), addLast(), removeFirst(), removeLast()

15.4.3 Implementations

• PriorityQueue – for natural ordering or custom comparators.

• ArrayDeque – efficient resizable array-based implementation.

15.5 Map Interface and Its Implementations

15.5.1 Map Interface

A Map stores key-value pairs. Keys must be unique.

15.5.2 Implementations

• HashMap

o Unordered, allows null key and values.

• LinkedHashMap

o Maintains insertion order.

• TreeMap

o Sorted by keys.

• Hashtable

o Legacy synchronized implementation.

15.5.3 Common Methods

• put(K key, V value)

• get(Object key)

• remove(Object key)

• keySet(), values(), entrySet()

15.6 Iterating Over Collections

• Enhanced For-Loop (for-each)

• Iterator (with hasNext() and next())

• ListIterator (for bidirectional access)

• Streams and Lambdas (Java 8+)

15.7 Algorithms in Collections

• Collections.sort()

• Collections.reverse()

• Collections.shuffle()

• Collections.binarySearch()

• Collections.max(), min()

• Collections.unmodifiableList()

15.8 Comparators and Comparable

15.8.1 Comparable Interface

• Defines natural ordering via compareTo(T o).

15.8.2 Comparator Interface

• Defines custom ordering using compare(T o1, T o2).

15.9 The Role of Generics

15.9.1 Why Generics?

• Type safety

• Elimination of casting

• Code reusability

15.9.2 Syntax

List<String> list = new ArrayList<>();

15.9.3 Generic Methods

public <T> void printArray(T[] array) {
 for (T item : array) System.out.println(item);
}

15.9.4 Bounded Type Parameters

<T extends Number>

15.10 Wildcards in Generics

15.10.1 Unbounded Wildcards: <?>

Used when the exact type is unknown.

15.10.2 Upper Bounded Wildcards: <? extends T>

Allows reading items of type T or its subtypes.

15.10.3 Lower Bounded Wildcards: <? super T>

Allows writing items of type T or its supertypes.

15.10.4 PECS Rule

• Producer – extends

• Consumer – super

15.11 Generic Classes and Interfaces

15.11.1 Generic Class

class Box<T> {
 private T value;
 public void set(T value) { this.value = value; }
 public T get() { return value; }
}

15.11.2 Generic Interface

interface DataStore<T> {
 void save(T item);
}

15.12 Collections vs Arrays

Feature Collections Arrays

Size Dynamic Fixed

Type Safety With Generics Compile-time only

Flexibility High Limited

Performance Slight overhead Faster for primitives

15.13 Best Practices

• Always use Generics to avoid ClassCastException.

• Prefer List over ArrayList in declarations.

• Use Streams for functional-style processing.

• Avoid raw types.

• Use appropriate collection type based on use case (e.g., HashSet for uniqueness).

15.14 Summary

The Java Collections Framework and Generics are cornerstones of effective Java development.
Collections enable the management of groups of data, while Generics ensure that this

management is both type-safe and reusable. Mastering these tools is crucial for building
scalable, maintainable, and robust Java applications.

