Chapter 35: Concept of Peak Acceleration

Introduction

In earthquake engineering, understanding how the ground shakes during a seismic event is crucial for designing safe and efficient structures. One of the most important parameters to characterize earthquake ground motion is **Peak Ground Acceleration (PGA)**, which represents the maximum acceleration experienced by the ground during an earthquake. PGA is a key input for seismic design, risk assessment, and performance-based engineering.

This chapter delves into the **concept of peak acceleration**, its **measurement**, **engineering significance**, **relationship with earthquake magnitude and intensity**, and how it is used in **design codes**. It also covers the **influence of soil conditions**, **site amplification**, and **instrumentation** used for recording ground acceleration.

35.1 Definition of Peak Ground Acceleration (PGA)

- Peak Ground Acceleration (PGA) is defined as the maximum absolute value of horizontal acceleration recorded at a particular location during an earthquake.
- Mathematically, if a(t) is the ground acceleration time history, then:

$$PGA = max \lor a(t) \lor \ddot{c}$$

- It is typically measured in **g** (acceleration due to gravity) or **m/s²**.
- PGA does not provide information about duration or frequency content but gives a direct indication of the force exerted on structures at the base.

35.2 Engineering Importance of PGA

• **Structural Design Input**: PGA is the primary input parameter for many **seismic design codes** including IS 1893, which use it to define seismic zones and base shear.

- Seismic Hazard Assessment: It is a key parameter in Probabilistic Seismic Hazard Analysis (PSHA) and Deterministic Seismic Hazard Analysis (DSHA).
- **Design of Lifelines and Infrastructure**: Bridges, dams, nuclear plants, and pipelines are designed to withstand forces based on expected PGA levels.

35.3 Measurement of Ground Acceleration

- Ground acceleration is recorded using accelerographs or strong-motion seismographs.
- These instruments capture the full acceleration time history during seismic shaking.
- Modern seismic stations record digital ground motion in three directions: two horizontal (X and Y) and one vertical (Z).

35.4 Response Spectra and PGA

- Response spectra represent the peak response (acceleration, velocity, displacement) of a set of single-degree-of-freedom (SDOF) systems to a ground motion.
- PGA is the **zero-period acceleration** of the acceleration response spectrum.
- PGA is thus a limiting value of the response spectrum at very high natural frequencies.

35.5 Factors Affecting Peak Acceleration

35.5.1 Earthquake Magnitude

- Larger magnitude earthquakes generally produce larger PGAs, but not linearly.
- The rate of increase of PGA with magnitude diminishes beyond a certain level.

35.5.2 Epicentral Distance

- PGA decreases with distance from the source (attenuation).
- Empirical attenuation relationships (Ground Motion Prediction Equations, GMPEs) are used to estimate PGA at various distances.

35.5.3 Site Conditions

- Local soil and geology play a significant role:
 - o Soft soil amplifies ground motion → higher PGA.
 - o Rock sites show lesser amplification → lower PGA.
- Site response analysis is needed to modify PGA for local conditions.

35.5.4 Fault Type and Depth

- Thrust faults and shallow-focus earthquakes tend to produce higher PGAs.
- The directionality of fault rupture can also cause directivity effects increasing PGA at certain locations.

35.6 PGA in Seismic Zoning and Building Codes

- In India, IS 1893 divides the country into seismic zones II to V, each associated with a **zone factor (Z)** representing expected PGA:
 - o Zone II: Z = 0.10g
 - o Zone III: Z = 0.16g
 - o Zone IV: Z = 0.24g
 - o Zone V: Z = 0.36g
- These values are used to calculate design base shear in structural analysis.
- PGA values in codes are maximum credible values with some level of conservatism.

35.7 Empirical Relationships and Attenuation Models

 PGA is commonly estimated using Ground Motion Prediction Equations (GMPEs) of the form:

$$\log_{10}(PGA) = a + bM - c\log_{10}(R + d)$$

where:

- o M = magnitude
- o R = hypocentral/epicentral distance
- o a, b, c, d = empirical constants

• Different models exist for different tectonic settings (e.g., subduction zones, intraplate regions).

35.8 Peak Acceleration vs Peak Velocity and Displacement

Parameter	Unit	Captures	Significance
PGA	m/s² or g	Instantaneous ground force	Direct input to force-based design
PGV	cm/s	Velocity of ground movement	Correlates better with structural damage
PGD	cm	Ground displacement	Important for flexible structures

- PGA is more relevant for stiff and short-period structures.
- **PGV and PGD** are critical for **long-period** or flexible structures like bridges.

35.9 Limitations of Using PGA Alone

- PGA does not capture:
 - o **Duration** of shaking
 - o Frequency content
 - o **Cumulative energy**
- For performance-based design, more detailed measures like **Spectral Acceleration (Sa)** and **Arias Intensity** are used.
- However, PGA remains the **most accessible and easily understood** seismic parameter.

35.10 Site-Specific Peak Acceleration Estimation

- Requires:
 - a. Identification of seismic sources.

- b. Selection of appropriate GMPEs.
- c. Consideration of **local site class** (as per NEHRP/IS 1893).
- d. Probabilistic or deterministic hazard modeling.
- **Microzonation studies** often present PGA maps with resolution down to city-block level.

35.11 Instrumentation for Recording PGA

- Instruments:
 - Strong motion accelerometers
 - o **Digital recording systems** (24-bit or higher resolution)
- Networks in India:
 - o Indian Meteorological Department (IMD)
 - o IITs and research institutions
 - o Array installations in high-risk zones (e.g., Himalayan belt)

35.12 Case Studies of Recorded PGA in Major Earthquakes

Earthquake	Year	Country	Recorded PGA
Bhuj Earthquake	2001	India	~0.35g
Northridge Earthquake	1994	USA (California)	~0.91g
Kobe Earthquake	1995	Japan	~0.84g
Nepal Gorkha Earthquake	2015	Nepal-India	~0.25g

• The high values highlight the need for **robust seismic design** in urban infrastructure.

35.13 Design Implications of High PGA

- High PGA leads to:
 - o Increased base shear demand

- o Higher lateral forces
- o Greater detailing for ductility and energy dissipation
- Structures must be designed using **Response Reduction Factors (R)** and **Importance Factors (I)** to ensure safety.

35.14 Directionality and Peak Acceleration

- **Directional effects** occur when the rupture propagates toward a site, causing forward-directivity, which increases PGA in that direction.
- Vector PGA:
 - o Engineers sometimes consider *Vector PGA* or *Resultant PGA* combining horizontal components:

$$PGA_{vector} = \sqrt{\overline{\iota \iota}}$$

• Structures must be designed to resist **multi-directional shaking**, not just along a single axis.

35.15 Peak Acceleration on Structures vs Ground

- While **PGA** refers to free-field ground acceleration, structures experience **increased accelerations** at different levels (especially at the roof/top):
 - These are called floor accelerations.
 - o Floor accelerations can be **2–3 times the PGA** due to resonance and mode shapes.
- Important for:
 - Non-structural components like suspended ceilings, piping, equipment, which often fail due to these higher accelerations.

35.16 Design Spectrum and its Relationship with PGA

- The **design acceleration spectrum** is anchored at PGA and varies with the period of vibration:
 - o Short period: Sa ≈ PGA × amplification factor

- o Long period: Sa decreases with increasing period
- IS 1893 provides standard response spectra scaled to PGA (Zone factor × Importance factor × Response Reduction factor).

35.17 Scaling Real Earthquake Records Using PGA

- In dynamic analysis, real ground motion records are used but scaled to match design PGA:
 - o **Linear scaling**: Multiplies all accelerations to match target PGA.
 - o **Spectral matching**: Adjusts the record to match response spectrum shape.

35.18 Use of PGA in Performance-Based Seismic Design (PBSD)

- PBSD requires defining **performance objectives** for different levels of ground shaking:
 - o Operational (PGA ≈ 0.1g) minor damage
 - o Life Safety (PGA ≈ 0.2g) moderate damage, no collapse
 - o **Collapse Prevention (PGA ≈ 0.36g and above)** severe damage, no total failure
- PGA is linked to Annual Exceedance Probabilities in performance criteria (e.g., 10% in 50 years).

35.19 Probabilistic Seismic Hazard Maps (PGA-Based)

- **PGA contour maps** represent expected maximum ground acceleration with certain return periods:
 - o 475-year return period (10% chance in 50 years)
 - o 2,475-year return period (2% in 50 years)
- Used in:
 - o Urban planning
 - o Critical infrastructure design

35.20 Limit State Design Approach Using PGA

- In Limit State Design, PGA governs the **Ultimate Limit State (ULS)** for seismic loading.
- Partial safety factors applied to seismic loads depend on PGA and structural importance.

35.21 Advances in PGA Prediction through AI and Machine Learning

- Recent research integrates **machine learning models** (e.g., Random Forests, Neural Networks) to predict PGA using:
 - o Earthquake source data
 - o Geotechnical site conditions
 - o Historical records
- These models are more adaptable to regional conditions than traditional GMPEs.

35.22 Limitations of PGA in Modern Earthquake Engineering

- While PGA is simple and widely used, it is:
 - o **Insensitive to duration** and frequency content
 - o Not sufficient for **fragility analysis** or **soil liquefaction studies**
 - Less effective for nonlinear dynamic response modeling

35.23 Supplementary Ground Motion Parameters

- To overcome PGA's limitations, engineers often consider:
 - o Spectral Acceleration (Sa) period-dependent acceleration
 - o **Arias Intensity** total energy content
 - o Cumulative Absolute Velocity (CAV)

- o **Significant Duration** time span of strong shaking
- These complement PGA in seismic hazard assessment.

35.24 IS Code Recommendations Related to PGA

- IS 1893:2016 (Part 1):
 - o Defines Zone Factor (Z) as effective PGA
 - o Provides design spectrum anchored at PGA
 - o Requires site classification and amplification factors
- **IS 456, IS 13920**: Use PGA indirectly through design base shear and ductility provisions.