Chapter 10: Fourier Cosine and Sine Transforms

Introduction

In civil engineering, analyzing and solving boundary value problems—especially
those involving heat transfer, wave motion, or vibrations—often requires con-
verting a function from the spatial domain to a frequency domain. Fourier
transforms are indispensable in this context. However, when the problem is
defined on a semi-infinite domain (e.g., # > 0), Fourier Cosine and Sine
Transforms are preferred over the general Fourier transform. These transforms
allow decomposition of functions into orthogonal sine and cosine basis functions,
effectively handling problems with specific boundary conditions.

10.1 Fourier Cosine Transform (FCT)
Definition

For a function f(x) defined on [0, 00), the Fourier Cosine Transform is defined

Fi(s) = \E / " Fla) cos(se) d

o f(z) is piecewise continuous on every finite interval in [0, 00),
o f(z) is absolutely integrable on [0, 00),
e s is the transform variable (frequency domain variable).

Where:

Inverse Fourier Cosine Transform

F@) = \/z /0 " Fu(s) cos(s) ds

This restores the original function from its cosine transform.

Properties of Fourier Cosine Transform

1. Linearity:

Felaf(x) +bg(x)} = aFe{f(2)} + bFe{g(x)}
2. Scaling:



Fo{f(az)} = %F (2). a>0

3. Differentiation: If f(z) is differentiable and vanishes as x — oo,

Fdf(a \f/ F(a) sin(sz)

4. Parseval’s Identity:

/OOO F@)2da = /OOO Fu(s)2 ds

Examples

Example 1: Fourier Cosine Transform of f(z) = e ", where a >0

=z [ montsnia=yT S
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10.2 Fourier Sine Transform (FST)

Definition

For a function f(z) defined on [0, c0), the Fourier Sine Transform is defined

_ \/z /0 " Fa) sin(s) da

Inverse Fourier Sine Transform
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Properties of Fourier Sine Transform

1. Linearity:

Folaf(x) +bg(x)} = aFo{f(x)} + bF{g(2)}
2. Scaling:



Flfa) = 1R (2), a0

3. Differentiation: If f(z) is differentiable and vanishes as x — oo,

F{f'(z)} = 5\/3/0Oo f(z) cos(sz) dx

4. Parseval’s Identity:

/OOO F@)2de = /Ooo Fu(s)% ds

Examples
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Example 2: Fourier Sine Transform of f(z) = e °*, where a > 0

2 > —axr s 2 S
Fy(s) = \/;/0 e “sin(sz)dr = g B

10.3 Applications in Civil Engineering

Fourier sine and cosine transforms are applied in the following civil engineering
contexts:

¢ Heat Conduction in Semi-Infinite Slabs: Boundary conditions at
one end (e.g., insulated or fixed temperature) often lead to cosine or sine
transform solutions.

¢ Deflection of Beams with One Fixed End: Solving beam bending
equations using Fourier cosine transforms when the displacement or slope
is known at one end.

¢ Wave Propagation in Strings or Rods: For rods fixed at one end
and free at the other, sine transforms help solve the partial differential
equations.

10.4 Relation to Full Fourier Transform

The full Fourier transform is defined over (—oo,00), but for even and odd
extensions of functions defined only on [0, c0), the sine and cosine transforms
correspond respectively:

o If f(x) is even:



F{f(x)} +> Cosine Transform
o If f(x) is odd:
F{f(x)} + Sine Transform

Thus, these transforms are not just computational tricks—they carry deep
connections to symmetry properties and domain constraints of physical systems.

10.5 Standard Fourier Cosine and Sine Transform Pairs

Fourier Cosine Fourier Sine Transform

Function f(z) Transform F.(s) Fy(s)

2 1 2 1
1 \/; s \/; s
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10.6 Advanced Applications in Boundary Value Problems

Many engineering problems reduce to solving partial differential equations
(PDEs) with boundary conditions. Fourier sine and cosine transforms are highly
effective in solving such problems, particularly when domains are semi-infinite.

10.6.1 Application: Heat Equation in a Semi-Infinite Rod

Consider a semi-infinite rod z € [0, 00) initially at zero temperature, and for
t > 0, the end z = 0 is held at a constant temperature Ty. The governing
equation is the heat conduction equation:

ou 5 0%u

— =a’— 0,t>0
It aaIQ,x>,>

Subject to:

u(0,t) =Ty, u(xz,0)=0, lm u(z,t)=0

T—00



Solution Method:

We take the Fourier Cosine Transform with respect to x:

Let U(s,t) = Fo{u(z,t)} \[fo u(x, t) cos(sz) dx

Using properties of derivatives under transforms:

2
Fe {g;;} = —5°U(s,t)

ou

= a = QSQU(S,t)

This is a first-order linear ODE in ¢ with solution:

U(s,t) = A(s)e > ="t
From initial condition u(z,0) = 0 = U(s,0) = 0 = A(s) = 0, but this contradicts
the boundary condition. To fix this, we transform the nonhomogeneous boundary

via suitable substitution (e.g., Duhamel’s principle or separation of variables),
which leads to:

) = e

Where erfc(z) is the complementary error function.

10.6.2 Application: Beam Deflection with One Fixed End

A cantilever beam of length L, fixed at = 0, subjected to a load ¢(z). The
Euler-Bernoulli beam equation is:

dty _ q(z)
dat EI

With boundary conditions (fixed end at = = 0):

We apply the Fourier Cosine Transform to both sides:
Let Y (s) = Fe{y(x)}, then:



Thus,

SV ()= g Fla@) = V() = g Fela(e))

Taking the inverse transform yields the deflection y(x).

10.7 Solving PDEs Using Fourier Sine Transform

Now consider problems where the solution vanishes at the boundary x = 0,
which is ideal for Fourier Sine Transform.

10.7.1 Wave Equation with a Free End

Let us consider the one-dimensional wave equation:

Pu 0%

o2~ o2

With boundary conditions:

ou

u(0,t) =0, xlgrolc u(z,t) =0, wu(z,0)= f(z), E(w,O) =0
Apply the Fourier Sine Transform:
02U 9 9
U(s,t) = Fe{u(z,t)} = o2 = C8 U

This is a second-order ODE in t:

= U(s,t) = A(s) cos(cst) + B(s) sin(cst)
Initial conditions give:

ouU

U(s,0) = F{f(2)} = AGs), .

=0=B(s)=0

Thus,



U(s,t) = Fs{f(x)} - cos(est) = u(x,t) = \/2/000 Fs{f(x)} cos(est) sin(sz) ds

This integral solution gives the displacement of a vibrating rod fixed at one
end.

10.8 Evaluation of Integrals Using Transforms

Another practical use of Fourier sine and cosine transforms is evaluating im-
proper integrals.

0 mbln(az)d

Example 3: Evaluate [~ 55

Let:

x x sin(sx)
Using integral tables or residue calculus:
*° zsin(ax)
2\ A =
/0 x? + b2 o

Hence, Fourier transforms provide a powerful way to evaluate such definite
integrals analytically.
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10.9 Fourier Transforms of Derivatives

Knowing how to handle derivatives within the transforms is crucial for PDEs.

10.9.1 Cosine Transform of First Derivative

Flf'(2)} = —sF{f(2)}



10.9.2 Sine Transform of First Derivative
2
FAP (@) = s @) - 210

These relations help simplify many boundary-value problems in civil engineering
(e.g., thermal gradient, slope in beam deflection).
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