
Chapter 14: GUI Development and Application
Design in SciLab

Introduction
Graphical User Interface (GUI) development plays a vital role in modern scientific
and engineering applications, enabling users to interact with software tools more
intuitively. SciLab, an open-source platform for numerical computation, provides
powerful tools for GUI creation through its dedicated module called GUI
Builder and uicontrols. This chapter explores the techniques of designing and
implementing interactive applications using SciLab’s GUI capabilities. We will
walk through the development process, from basic GUI elements to full-scale
application design, all within SciLab’s environment.

14.1 GUI Builder in SciLab
14.1.1 Introduction to GUI Builder

• GUI Builder is a toolbox in SciLab that provides a drag-and-drop interface
for creating user interfaces.

• It simplifies the process of placing components like buttons, sliders, frames,
etc.

• The generated GUI code can be customized and embedded into larger
applications.

14.1.2 Installing the GUI Builder Module

• Accessing ATOMS (Autonomous Modules)

• Using the following command to install:

• atomsInstall("GUI Builder")

• Loading the toolbox after installation:

• atomsLoad("GUI Builder")

14.1.3 Launching GUI Builder

• After loading, launch using:

• guibuilder()

• Introduction to the GUI Builder interface: toolbar, canvas, properties
pane.

1



14.2 Basic GUI Components
14.2.1 Push Button

• Creation using GUI Builder or programmatically:

• uicontrol("style","pushbutton","string","Click Me","position",[100
100 100 40])

• Callback definition using "callback" property.

14.2.2 Static Text and Editable Text

• Static text:

• uicontrol("style","text","string","Display Here","position",[80
160 100 20])

• Editable text box for input:

• uicontrol("style","edit","position",[80 190 100 30])

14.2.3 Checkboxes and Radio Buttons

• Checkbox:

• uicontrol("style","checkbox","string","Option A","position",[50
250 100 30])

• Radio button group creation with appropriate grouping logic.

14.2.4 Sliders and List Boxes

• Slider:

• uicontrol("style","slider","position",[50 300 150 20],"min",0,"max",100,"value",50)

• List box with multiple entries:

• uicontrol("style","listbox","string",["Option1","Option2","Option3"],"position",[220
100 100 80])

14.3 Event Handling and Callback Functions
14.3.1 What are Callbacks?

• Callbacks are scripts executed when a user interacts with a component
(e.g., clicking a button).

• Defined using the "callback" property of GUI elements.

2



14.3.2 Writing Callback Functions

• Defining functions in the same file or as separate .sci scripts.

• Using global variables to share data between callbacks.

• Example:

• function onButtonClick()
disp("Button clicked!")
endfunction

14.3.3 Linking GUI Components with Callbacks

• Assigning the function:

• uicontrol("style","pushbutton","string","Click","callback","onButtonClick()")

14.4 Layout Management and GUI Design Principles
14.4.1 Positioning and Alignment

• Position vector [x, y, width, height]
• Absolute positioning vs dynamic layout.
• Using grids or relative placement for scalability.

14.4.2 Frames and Panels

• Using frames to group controls:

• uicontrol("style","frame","position",[50 50 200 150])

14.4.3 Best Practices in GUI Design

• Keeping the interface intuitive.
• Using meaningful labels and tooltips.
• Avoiding clutter; organizing components logically.

14.5 Advanced GUI Applications
14.5.1 Passing Data Between Components

• Use of global or persistent variables.

• Reading and updating component properties dynamically using:

• h = uicontrol(...);
h.value = 50;

3



14.5.2 Real-time Data Input and Output

• Linking GUI with functions performing computations.
• Updating GUI elements with results (e.g., displaying in static text).

14.5.3 File I/O via GUI

• Letting users load and save files through GUI.
• Using uigetfile() and uiputfile() functions.

14.5.4 GUI with Plotting Capabilities

• Integrating plot2d within GUI callbacks.

• Example:

• function plotGraph()
x = 0:0.1:10;
y = sin(x);
clf();
plot2d(x, y)
endfunction

14.6 Packaging and Deployment of GUI Applications
14.6.1 Creating Executable SciLab GUI Scripts

• Consolidating GUI code and logic.
• Saving the file as .sce or .sci.

14.6.2 Distributing Applications

• Creating a script that loads the GUI on SciLab start.
• Bundling dependencies (like toolboxes).

14.7 Debugging and Testing GUI Applications
14.7.1 Debugging Tools in SciLab

• Using disp() and mprintf() for debug outputs.
• Step-by-step testing of callbacks.

14.7.2 Common GUI Development Errors

• Misaligned positions
• Unresponsive callbacks
• Errors in reading component values (e.g., wrong handle)

4



14.7.3 Performance Optimization Tips

• Avoid unnecessary redraws or computations.
• Use appropriate data structures for storing component references.

14.8 Case Study: Building a Simple Calculator in SciLab
GUI
14.8.1 Objective

• Create a GUI-based calculator for basic arithmetic operations.

14.8.2 Interface Layout

• Two text input fields.
• Four buttons for +, -, *, /.
• One static text for displaying the result.

14.8.3 Implementing Functionalities

• Reading input values from edit boxes.
• Performing operations based on button click.
• Displaying output in result field.

14.8.4 Code Walkthrough

• Complete functional code with proper callback assignment.

5


	Chapter 14: GUI Development and Application Design in SciLab
	Introduction
	14.1 GUI Builder in SciLab
	14.1.1 Introduction to GUI Builder
	14.1.2 Installing the GUI Builder Module
	14.1.3 Launching GUI Builder

	14.2 Basic GUI Components
	14.2.1 Push Button
	14.2.2 Static Text and Editable Text
	14.2.3 Checkboxes and Radio Buttons
	14.2.4 Sliders and List Boxes

	14.3 Event Handling and Callback Functions
	14.3.1 What are Callbacks?
	14.3.2 Writing Callback Functions
	14.3.3 Linking GUI Components with Callbacks

	14.4 Layout Management and GUI Design Principles
	14.4.1 Positioning and Alignment
	14.4.2 Frames and Panels
	14.4.3 Best Practices in GUI Design

	14.5 Advanced GUI Applications
	14.5.1 Passing Data Between Components
	14.5.2 Real-time Data Input and Output
	14.5.3 File I/O via GUI
	14.5.4 GUI with Plotting Capabilities

	14.6 Packaging and Deployment of GUI Applications
	14.6.1 Creating Executable SciLab GUI Scripts
	14.6.2 Distributing Applications

	14.7 Debugging and Testing GUI Applications
	14.7.1 Debugging Tools in SciLab
	14.7.2 Common GUI Development Errors
	14.7.3 Performance Optimization Tips

	14.8 Case Study: Building a Simple Calculator in SciLab GUI
	14.8.1 Objective
	14.8.2 Interface Layout
	14.8.3 Implementing Functionalities
	14.8.4 Code Walkthrough



