Solid Mechanics
Prof. Ajeet Kumar
Deptt. of Applied Mechanics
IIT, Delhi
Lecture - 18
Linear Momentum Balance in Cylindrical Coordinate System (Contd...)

Hello everyone! Welcome to Lecture 18! In this lecture, we will continue with the derivation of Linear
Momentum Balance LMB in cylindrical coordinate system.

1 Recap (start time: 00:28)

In the last lecture, we were discussing LMB Formulation in cylindrical coordinate system. We had
considered a cylindrical elementas shownin Figure 1.
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Figure 1: A generalized cylinder with its axis along the z axis. A cylindrical elementis considered within
the cylinder.

Aftera lengthy derivation, We had figured out the total force due to traction on+z and -z planesas given
below:
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We now presenta simpler but approximate derivation to obtain the same result.
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2 A simpler approach to find the traction force (start time: 01:58)

Let us consider the cylindrical element shown in Figure 2. Earlier, we had done the derivation by also
considering the variation of traction at different points on +z and -z planes. If we assume the traction to
be constant everywhere on the plane with its value being equal to the value at the center of the plane,
we can directly multiply it with the area of the plane to get the total force. We illustrate it now.

S ——
Figure 2: A cylindrical elementwith it’s various dimensions

As the center of the cylindrical element has coordinates (r,6,z), the center of the +z plane will be at
A . .
(r,<9,z+?Z) . Thus, the traction at the centerof +z plane will be

Az Az Az Az
t-f—: (]»_ 9 z+ 7) = 0, (]'70,’ 2z + 7)(_’: + Ty, (]" 0.z + 7)£9 + Tps (l’, 0, zZ+ 7>£,
(2)

The three basis vectors in the above expression, when evaluated at the center of +z plane will be the
same as the one at the center of cylindrical element because the two points have the same 6 coordinate.
Similarly, traction on the -z face at its center will be

(. Az o, Az - Az . Az
t (7,9.~—7)——0”(7.9,~— 5 )g:—70:<1,6",f,—7>59—T,.5<L9,,,—7>g,‘. 3

All the traction components point in the negative direction as this is —z face. The basis vectors at this
point are also the same as those at the center of the cylindrical element. In the previous lecture, we had
also found that the area of the z faces is:

A;=rAOAr (4)

Thus, the total force on the two z planes will be
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Az Az
FP 4+ 7 = [ﬁ:(r.ﬁ,:—k 5 ) +f:<r.9,s -5 )

which is obtained after assuming that traction does not vary over different points in a face of the
cylindrical element. Now, we do the Taylor’'s expansion of the components of traction about the center
of the cylindrical element. Asonly z coordinate has changed, the Taylor’s expansion will only have terms
corresponding to derivatives of z. Also, there will be no variation in the basis vectors. The first term for
the tractions on +z and -z planes can be expandedas

(5)

0., (r 0,z + %)gz = [azz(r, 0,z) + Ogj (r,0, :)A;} e.,
—0., <1 0,z — %)L = [ —0,.(r,0,2) + Ogj (r,0, :)A;}g: (6)

When we add the above two equations, the o,;terms cancel while the partial derivative terms add. We
can also expandthe tand 1y, terms in the same way. The total force on the z planes will thus become

F4+F7 = [Ogjzﬁz %Qa + %(_,] AzA, + o(AV)
0o, 07y 0T, ]
= —e.+ ¢+ ¢ |AV +o(AV).
{ 0z 0z 0z (7)

We have thus gotten the same result that when we had obtained while also considering variation of
traction over the plane. This is because the variation of traction overthe z planes only gives us smaller
order terms and is captured in o(AV) term. This term vanishes when we divide by AV and shrink the
volume of the cylindrical element to a point. Therefore, the variation of traction over the planes does
not play any role.

3 Force on +r and -r planes (start time: 14:04)

For getting the total force on +rand -r planes, we will use the approximate method just discussed above
as the exact derivation is much more tedious. We thus assume that traction on the +r plane (the convex

. . . A .
plane) is constant and equal to the value at its center, i.e. at (r + ;F,Q,z) and also the traction on the -r

, A .
plane is constant and equal to the value at (r- ;F,H,z). We will denote the area of the +r plane by A~ and

the area of the —r plane by A,-. From Figure 2, we can observe that the area of the r planes will be equal
to the curved edge multiplied with the height. Thus:
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Ar Ar
A= ||lr—— |Af| Az, Ay = || r+— |AF| Az
2 ~ 2 —~
| height _height
cur\-‘o?ir edge cur\-‘e-:; edge (8)

The forces on both the planes can be simply obtained by multiplying the traction at the center of the
planes with the area of the planes. So, the total force on +rand —r planes will be

E+r + E—r = t+r (T’ + % 91 Z) AI’+ + t_r (7) - %7 9 Z) AT‘—

=t 'r+£,0\2 r+£ AOAz +t" 'r'—g,f),z 'r—g AOAz
2 2 2 2 (9)

The traction vectors can be written as

. Ar Ar Ar Ar
tJr <T‘+ 7797‘3) = O-rr(r+77€:‘z)§r+7-0r (7""7.6, Z>§9+T21‘ (’+70 Z)Qza
A A Ar A
t"r— —r, 0,z = —op|1r— —r,ﬂ, z)e, —Tor | T — —',9, Z)eg = Top| T — —r, 0,z e,
2 2 2 2 " (10)

The basis vectors at the centers of the r planes are the same as those at the center of the cylindrical
element as they have the same 6 coordinate. Thus, we would not have to use Taylor’'s expansion for
basis vectors. Let’s consider the first term in the total force expression:

Opr (r + ﬁ 0, z) e, <7' + H) AOAz.
2 2 (11)

We can now rearrange the terms to bring all the terms dependent on rand use the Taylor’s expansion
about the center of the cylindrical element. We know that not only o changes with r but the r term
itself also changes with r. So, instead of doing the Taylor’s expansion of o, alone, we will consider our
function to be onr and do its Taylor’s expansion, i.e.,

Opr (r + E 0, z)gr (r + g>A9A: = |o., (r + ﬁ 0, z) <7‘ + E) e, AOAz
2 2 2 2
[ 0 Ar
= |o.,7r+ E(o’”./ )7 + e, AOAz
= |o.r+ ( —r + a,.r> +...le, A0Az
i or 2 (12)
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The corresponding term for the —r plane can be simplified in a similar manner, i.e.,

Ar Ar [ Ar Ar
—Opy (1 — 7,9, ~>§r (1 — 7>A9Aq = — |0 (7 — 7,9, ~> (1 — 7) e, A0Az
[ 0 Ar
= —|o.1 0’,_((7,,1')7 e, AOAz
_ [_ oo+ (05, s U) % e, AOAz

(13)

When we add these contributions from the +rand —r planesin the total force expression, o-terms cancel
and the partial derivative terms add up. A similar analysis forthe othertermsin the total force expression
can be done to obtain

oy 07y,

F 4+ F7 = < r 4+ g,.,.>(_e,,A7~A9A: + ( r+ Te,)f_ngl'NfAZ

or or
OTZ!
+ ) r+ T |e,ArAO0Az.
g (14)
As the volume of the cylindrical elementis rArAGAz, the above expression can also be written as
r r 0 rr rr a T ™ a zZr zZr
= F"+F 7= ” +(7 e, + ,TH +Ti €y + ‘71 +T~ e | AV.
or r or r or r z
(15)
Orr  Tor Tor
We get some extraterms ——: =~ and "~ which are not present in LMB for Cartesian coordinate

system. This happened beca’use,’in the cylindrical coordinate system, the areas of the +r plane and -r
planes are not the same. For a cuboid element however, the areas of all the opposite faces are the same.
We did not get similar terms for +z and -z planes in the cylindrical coordinate system because the areas
of those planes are the same.

4 Force on +6and -0 planes (start time: 29:42)

We will again use the approximate method. The coordinates of the center of the + 8 and -0 planes are
A A ) I
(r,@+ 7,2) and (r,0 - 7,2) respectively. The areas of the +6and -0 planes are the same but we will still

get extra terms here because of difference in basis vectors on the two planes: the two planes have
different @ coordinates. From Figure 2, we can note the areas of the 6 faces (Ay) is:

Ap=ArAz (16)

The total force on +8and -6 planes will therefore be
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E+9 + E‘e — |:t+0 (7’, 9 + %’ Z) + t*f) (he . AH Z>:| A()
’ ’ (17)

The traction on the +8 plane will be

£+9('r,0+%,3> = 099(7‘,9{'-%73)@0(7'79-%%,Z)

A0 Ad
+71g| 1m0+ — 2 )e. |10+ —,2
2 2 (18)

Now, erand eyalso have to be expanded using Taylor’s series. Forthe Taylor's expansion, we will consider
ogpepand teras the functions to be expanded. We thus obtain

iM’(r.() + % :) = [09920 + %(”9920)% + | + | Treg, + %(Tv-e'_fr)% + ] + [Tzﬁﬁs + 0(.7)—;0 %S: + }
-0 a0 z)=|— i M - e i e ﬁ — T.p€ OT:HMC
t (T-0+ 7~> = { Tggoey + 09(0695()) 5 ] + Tro€, + ()6(77-6);,-) 5 Tt 208 + 5" ks +---](19)
Upon adding the two contributions, we finally obtain
0 0 OT.0
FY 4+ F0 = | - (0ppey) A0 + —(Tr0e,) A0 + —=Abe, | ArAz.
4 £ 89( 99—0) 00( 79—7) 00 =z (20)

We can see from this equation that the product rule will give us extratermsin the form of the derivatives
of basis vectors with respect to 6. We finally obtain

1[0 ar, or.
E+6 + E_e = ; ggogg + 000(—Qr) + %Qr + Tro€p + %QZ rArAOAz
1 _00 or, 0T, ]
= |t onle) + e + e + e, | AV. -

5 Total force due to traction (start time: 40:32)

We have found the force due to traction on all the faces of the cylindrical element. We can add equations
(1), (15) and (21) to obtain the total force on the cylindrical elementdue to traction to be
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Eo= g et atp "
» plane
+ (8?"" + G”)e‘ + (B_Tg’ + E)g + (O'L + F)e
or r )™ or r )7 or r )
r plane
+ % (O‘;;g - agg)g,, + ;1 (T,-g + %)QQ + 65(;95“: AV + o(AV)
8 plane

(22)
6 Body force (start time: 44:40)

For the body force, we just need to find the body force at the center of the cylindrical element and
multiply it with the volume of the element. We further decompose the body force into components
along e;, epand e; to obtain

Fb= (brer+ boey+ bze)AV + o(AV) (23)

7 Rate of Change of Linear Momentum (start time: 45:55)

. . d = . -
Just like the body force term, the rate of change of linear momentum term (EP) will also be very similar

to that of the Cartesian coordinate system. Only the acceleration vector has to be decomposed along
the cylindrical coordinate basis vectors, i.e.,

1
%(?) = playe, + agey + a.e,)AV + o(AV) (24)

8 Final Balance (start time: 46:49)

We have got all the terms for Linear Momentum Balance. We can now plug in equations (22), (23) and
(24) in the following balance law

t b i
Flt P = 2(P) -

We also divide both the sides by AV and take the limit AV = 0. By doing this, the o(AV) terms will drop

out. We finally separate the terms in the final balance equation along different basis vectors to get the
component form of the balance equation, i.e.,
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Equation in r-direction:

0o, 1019 0T  Op — Ogg
— 7 = br - r
or r 00 0z + r * pa (26)
Equation in U-direction:
07'9,. 1 00’99 07’9: Tro
- 2 by =
or Trap "o T TheTrw (27)

Equation in z-direction:

07—,:r+107—:0+00-:: +7—:r+b — pa
or T rae 9. g TP (28)

The first three termsin each of the equations are similar to what we get in Cartesian coordinate system.
Thereis one extratermin each equation. The extraterm forthe 6-direction contains a factor of 2 because
the two terms’" and 7" can be combined as one using the symmetry of stress matrix. These
r -

equations can be remembered easily. First of all, we needto list down all the stress components in the
direction we are considering. For example, for the r-direction, we need or, twand t.. Then, we needto
take their partial derivatives with respect to their second indices. Whenever we do a partial derivative
with respect to 6, we need to also divide by r. However, the extra terms need to be remembered
explicitly.

We can conclude from this derivation that the equations for cylindrical coordinate system are quite
differentwhen compared with the equations in Cartesian coordinate system. So, it was really important
to work out this derivation explicitly. In the next lecture, we will see how the strain matrix can be
representedin cylindrical coordinate system.
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