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Lecture - 18
Linear Momentum Balance in Cylindrical Coordinate System (Contd...)

Hello everyone! Welcome to Lecture 18! In this lecture, we will continue with the derivation of Linear
MomentumBalance LMB in cylindrical coordinate system.

1 Recap (start time: 00:28)

In the last lecture, we were discussing LMB Formulation in cylindrical coordinate system. We had
considered a cylindrical elementas shown in Figure 1.

Figure 1: A generalized cylinder with its axis along the z axis. A cylindrical element is consideredwithin
the cylinder.

Aftera lengthyderivation, We had figured out the total force due to traction on+z and −zplanes as given

below:

(1)

We now presenta simpler but approximate derivation to obtain the same result.
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2 A simpler approach to find the traction force (start time: 01:58)

Let us consider the cylindrical element shown in Figure 2. Earlier, we had done the derivation by also
considering the variation of traction at differentpoints on +z and −zplanes. If we assume the traction to
be constant everywhere on the plane with its value being equal to the value at the center of the plane,

we can directly multiply it with the area of the plane to get the total force. We illustrate it now.

Figure 2: A cylindrical elementwith it’s various dimensions

As the center of the cylindrical element has coordinates (r,θ,z), the center of the +z plane will be at

(r,θ,z+
∆

2
) . Thus, the traction at the centerof +z plane will be

(2)

The three basis vectors in the above expression, when evaluated at the center of + z plane will be the
same as the one at the center of cylindrical elementbecause the two points have the same θ coordinate.
Similarly, traction on the −z face at its center will be

(3)

All the traction components point in the negative direction as this is − z face. The basis vectors at this
point are also the same as those at the center of the cylindrical element. In the previous lecture, we had

also found that the area of the z faces is:

Az= r∆θ∆r (4)

Thus, the total force on the two z planes will be
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(5)

which is obtained after assuming that traction does not vary over different points in a face of the
cylindrical element.Now, we do the Taylor’s expansionof the components of traction about the center

of the cylindrical element. Asonly z coordinate has changed, the Taylor’s expansionwill only have terms
corresponding to derivatives of z. Also, therewill be no variation in the basis vectors. The first term for
the tractions on +z and −z planes can be expandedas

(6)

When we add the above two equations, the σzz terms cancel while the partial derivative terms add. We
can also expand the τrzand τθz terms in the same way. The total force on the z planes will thus become

(7)

We have thus gotten the same result that when we had obtained while also considering variation of
traction over the plane. This is because the variation of traction over the z planes only gives us smaller

order terms and is captured in o(∆V ) term. This term vanishes when we divide by ∆V and shrink the
volume of the cylindrical element to a point. Therefore, the variation of traction over the planes does
not play any role.

3 Force on +r and −r planes (start time: 14:04)

For getting the total force on +rand −r planes, wewill use the approximate method justdiscussed above
as the exact derivation is much more tedious. We thus assume that traction on the + r plane (the convex

plane) is constant and equal to the value at its center, i.e. at (r +
∆r

2
,θ,z) and also the traction on the −r

plane is constant and equal to the value at (r -
∆r

2
,θ,z).We will denote the area of the +r plane by Ar+ and

the area of the −r plane by Ar−. From Figure 2, we can observe that the area of the r planes will be equal
to the curved edgemultiplied with the height. Thus:
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(8)

The forces on both the planes can be simply obtained by multiplying the traction at the center of the
planes with the area of the planes. So, the total force on +r and −r planes will be

(9)

The traction vectors can be written as

(10)

The basis vectors at the centers of the r planes are the same as those at the center of the cylindrical

element as they have the same θ coordinate. Thus, we would not have to use Taylor’s expansion for
basis vectors. Let’s consider the first term in the total force expression:

(11)

We can now rearrange the terms to bring all the terms dependent on r and use the Taylor’s expansion
about the center of the cylindrical element. We know that not only σrr changes with r but the r term

itself also changes with r. So, instead of doing the Taylor’s expansion of σrr alone, we will consider our
function to be σrrr and do its Taylor’s expansion, i.e.,

(12)
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The corresponding term for the −r plane can be simplified in a similar manner, i.e.,

(13)

Whenwe add these contributions from the +rand −r planes in the total force expression, σrr terms cancel
and the partial derivative termsadd up. A similar analysis for the other terms in the total force expression
can be done to obtain

(14)

As the volume of the cylindrical element is r∆r∆θ∆z, the above expression can also be written as

(15)

We get some extra terms and which are not present in LMB for Cartesian coordinate
system. This happened because, in the cylindrical coordinate system, the areas of the + r plane and −r
planes are not the same. For a cuboid elementhowever, the areasof all the opposite faces are the same.

We did not get similar terms for +z and −z planes in the cylindrical coordinate systembecause the areas
of those planes are the same.

4 Force on +θ and −θ planes (start time: 29:42)

We will again use the approximate method. The coordinates of the center of the +θ and −θ planes are

(r,θ +
∆

2
,z) and (r,θ -

∆

2
,z) respectively. The areas of the +θ and −θ planes are the same but we will still

get extra terms here because of difference in basis vectors on the two planes: the two planes have
differentθ coordinates. From Figure 2, we can note the areas of the θ faces (Aθ) is:

Aθ= ∆r∆z (16)

The total force on +θ and −θ planes will therefore be
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(17)

The traction on the +θ plane will be

(18)

Now, erand eθalso have to be expandedusingTaylor’s series. For the Taylor’s expansion,wewill consider

σθθeθand τrθer as the functions to be expanded.We thus obtain

(19)

Upon adding the two contributions, we finally obtain

(20)

We can see fromthis equation that the product rule will give us extra terms in the formof the derivatives
of basis vectors with respect to θ. We finally obtain

(21)

5 Total force due to traction (start time: 40:32)

We have found the force due to traction on all the facesof the cylindrical element.We can addequations
(1), (15) and (21) to obtain the total force on the cylindrical elementdue to traction to be
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(22)

6 Body force (start time: 44:40)

For the body force, we just need to find the body force at the center of the cylindrical element and

multiply it with the volume of the element. We further decompose the body force into components
along er, eθand ez to obtain

Fb= (brer+ bθeθ+ bzez)∆V + o(∆V ) (23)

7 Rate of Change of Linear Momentum (start time: 45:55)

Just like the body force term, the rate of change of linear momentum term (



⃗ ) will also be very similar

to that of the Cartesian coordinate system. Only the acceleration vector has to be decomposed along
the cylindrical coordinate basis vectors, i.e.,

(24)

8 Final Balance (start time: 46:49)

We have got all the terms for Linear Momentum Balance. We can now plug in equations (22), (23) and
(24) in the following balance law

(25)

We also divide both the sides by ∆V and take the limit ∆V→ 0. By doing this, the o(∆V ) terms will drop

out. We finally separate the terms in the final balance equation along different basis vectors to get the
component form of the balance equation, i.e.,
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Equation in r-direction:

(26)

Equation in θ-direction:

(27)

Equation in z-direction:

(28)

The first three terms in each of the equations are similar to what we get in Cartesian coordinate system.
There is one extra term in eachequation. The extra termfor the θ-direction contains a factor of 2 because
the two terms and can be combined as one using the symmetry of stress matrix. These

equations can be rememberedeasily. First of all, we need to list down all the stress components in the
direction we are considering. For example, for the r-direction, we need σrr, τrθand τrz. Then, we need to
take their partial derivatives with respect to their second indices. Whenever we do a partial derivative
with respect to θ, we need to also divide by r. However, the extra terms need to be remembered

explicitly.

We can conclude from this derivation that the equations for cylindrical coordinate system are quite
differentwhencompared with the equations in Cartesian coordinate system. So, it was really important

to work out this derivation explicitly. In the next lecture, we will see how the strain matrix can be
represented in cylindrical coordinate system.
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