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Lecture - 21
Extension-Torsion-Inflation in a HollowCylinder (Contd.)

Hello everyone! Welcome to Lecture 21! We will continue with our discussion on Extension -Torsion-

Inflation in a hollow cylinder. In the previous lecture, we had derived the reduced form of equilibrium
equations which we need to solve to obtain the displacement.

1 Recap (start time: 00:27)

We had derived the following simplified form of equilibrium equations when the cylinder is in static
equilibrium and not subjected to any body force:

(1)

(2)

We had also obtained the following expressions of stress components in terms of displacement
components:

(3)

(4)

(5)

(6)

(7)

(8)

2 Mathematical form of uz (start time: 01:05)

As uzand ur are functions of z and r respectively,we can rewrite equation (5) as

(9)
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From equation (2),we can infer that σzzdoes not dependon z. Also, σzzdoesnot have any term that has

dependence on θ. Thus, it is a function of r only, i.e.,

(10)

Accordingly, the term dependent on z in the LHS must be a constant or uz’ must be a constant. As uz’
denotes longitudinal strain in axial direction, wewill denote it by ϵ, an unknownbut constant parameter.

3 Mathematical form of ur (start time: 05:04)

The expressionsof σrr and σθθ given in (3) and (4) now become

(11)

(12)

Subtracting them, we get

(13)

Likewise, taking the partial derivative of equation (11) with respect to r, we get

(as ϵ is constant) (14)

Now,we can plug equations (13) and (14) into equilibrium equation (1) to get

(15)

We can infer from this that is also a constant, say C. Further, from the definition of strain

components,we know that and . Thus, we get

(16)

Integrating (15) twice, we finally get
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(17)

where C and D are the unknown integrating constants.

4 Solution for σrr and σθθ (start time: 09:51)

4.1 Mathematical form (start time: 09:51)

Let us add equations (11) and (12):

(18)

Thus, the sum of radial and hoop stresses turns out to be a constant through the thickness of the tube,
however they individually vary through the tube’s thickness. Let us now solve the equilibrium equation

(1) directly in terms of stress components as follows:

(using (18)). (19)

From equation (11), we know that σrr is a function of r alone. Thus, the partial derivative with respect to
r becomes total derivative, i.e.,

(using (18)) (20)
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4.2 Application of boundary conditions (start time: 14:48)

Whenever we solve a differential equation, we get unknown integrating constants. To obtain those
constants, one has to apply boundary condition. Similarly, we need to identify the boundary conditions
for our deformation problem. Figure 1 shows our cylinder which is subjected to pressure on its inner

surface. The pressure acts as an externally applied known traction and thus can be used as one of the
boundary conditions. Similarly, there is zero traction on the outer surface of the cylinder which provides
the otherboundary condition. We had seenearlier that the internal traction due to stress at the surface

point equals the externally applied traction (tapp) through the following relation:

σ n = tapp (21)

Figure 1: Pressure acts on the inner surface of our hollow cylinder. The cross section of the cylinder is
shown on the right.

The outward surface normal of the inner curved surface (at r = r1) points in −r direction, i.e.,

(22)

Similarly, the external traction acts radially outward there, i.e., in the + r direction. So

(23)

Upon writing equation (21) in cylindrical coordinate system and further substituing the above two

results, we get:

or, σrr(r1) = −P, τθr(r1)0, τzr(r1) = 0. (24)
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Similar analysis for the outer surface where no external traction is present yields

σrr(r2) = 0, τθr(r2), τzr(r2) = 0. (25)

We have thusobtained the following two boundary conditions for σrr to obtain the unknown integrating
constants in its expression (20):

σrr(r1) = −P, σrr(r2) = 0. (26)

4.3 Final Solution (start time: 21:02)

Upon plugging the boundary condition (26) in equation (20), we get the following setof equations:

(27)

solving which we get

. (28)

For a positive internal pressure P, we always have A > 0 and B < 0. Using (20), we can now plot the
variation in both σrr and σθθ through the tube’s thickness as shown in Figure 2. The red curve shows the
variation of σθθwhile the black curve shows the variation of σrr.

Figure 2: Plot showing variation of σrr and σθθwith r
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As r→∞, both σrr and σθθapproach


2
which is a positive number for positive pressure P although r is

feasible only between r1 and r2. From the boundary condition, we also know directly from boundary
condition that σrr is −P at r = r1 and 0 at r = r2. As the sum of σrr and σθθalways has to be A, the curve for
σθθ is the mirror image of σrr about the blue dashed line. Furthermore, σrr and σθθdependonly on P and

the radii as can be seen from equations (28) and (20). If there is no internal pressure, σrr and σθθwill
simply vanish even if axial force and twisting moment are present. Thus, we infer that extension and
torsion cannot generate σrr and σθθ. This happens because the cross section is free to relax during

extensionand torsion of a circular cylinder. For cross-sections of irregular shape however,we can have
non-zeroσrr and σθθevendue to extensionand torsion.

5 Final solution for ur (start time: 29:27)

We have to find the constants (C,D) in the expression (17) to obtain complete solution of ur. The constant
C can be foundusing (18) as follows:

.

(29)

To get D, we can use equation (11) as shown below:

(using (17))

(using (18)) (30)

Comparing this with equation (20), we get:

(using (28)) (31)

Thus, ur finally becomes

(32)
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Upon setting P=0 in (32), we get

(33)

When we relate Lame’s constants (λ and µ) with Young’s modulus(E), Poisson’s ratio(ν) and shear
modulus(G), it turns out that

(34)

substituting which in the above expression for ur, we get

(35)

The radial longitudinal strain for P = 0 then turns out to be

(36)

This expression is exactly what we expect - radial displacement has arisen due to Poisson’s effect even
in the absence of pressure.

6 Solution for uzand uθ (start time: 36:30)

As uz is only a function of z and axial strain uz’ is a constant, integrating axial strain leads to

(37)

Here we assumed that uz vanishes when z = 0 because the axial displacement of the cylindrical mid-

section (z = 0) is zero by symmetry. We had also derived the expression for uθ in the previous lecture as

(38)

We need to finally obtain axial strain ϵ and end-to-end rotation Ω in terms of prescribed quantities

(applied axial force F and Torque T).

6.1 Relating torque and end-to-endrotation (start time: 37:37)

A typical cross-section of the hollow cylinder is shown in Figure 3. The cross-section normal points in the

z direction. So, σzz, τθzand τrz act on it.

180



Figure 3: A typical cross-section of the hollow cylinder: τθzacts in θ direction and contributes to torque.

We had found τrz to be zero. Thus, we need to analyze σzzand τθzonly. If the traction on any point on the
cross-section is represented by t, then the moment due to this traction about the cross-section center
’O’ will be given by the integration of r × t for each small area element in the cross section (r represents

the position vector of the area element from the center). If Ω0 denotes the area of the cross section, the
momentMwill be given by

(39)

The torque T is simply the componentof moment along the axis, i.e.,

(using (8))

(40)

The term is the polar momentof area (ageometrical quantity) and is denotedby J. Thus, we

finally get

(41)
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6.2 Relating axial force and axial strain (start time: 44:23)

To find ϵ, let us obtain the axial force in the cross-section through the integration of σzz, i.e.,

(42)

Here, A denotes the cross-sectional area. As we know the value of C from equation (29), we are finally

able to relate axial force Fwith axial strain ϵ. In the special case when P = 0, the expressionof C becomes
simpler which yields

(43)

where E is the Young’smodulus of elasticity. In case of zeropressure, ϵ can also be obtained in a simpler
way. We know that when P = 0, we get σrr = σθθ= 0. Using three-dimensional Hooke’s law, we can then
write

(44)

The axial force F for such a situation is then

(45)

We have finally derived the relationship between Ω and T as well as the relationship between ϵ and F.

The constant EA is called stretching stiffnesswhile the constant GJ is called torsional stiffness, i.e.,

The axial strain and twist are constant in the cross section of the cylinder.

7 Variation of γθzand τθz in the cross section (start time: 50:18)

We know
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(46)

Note that both the quantities vary linearly with r. This means that whenever we twist a cylinder/bar,
shear strain and shear stress vary linearly in the cross-section as we go outwards from the center (see
Figure 4).

Figure 4: Variation of shear strain and shear stress in the cross section of the cylinder.

7.1 Special case: composite cylinder (start time: 52:10)

We can also think of a composite cylinder made up of two different materials as shown in Figure 5.

Supposing the inner part (upto radius r1) is made up of Aluminium and the outerpart is made up of Steel.
The materials are glued together.
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Figure 5: The cross section of a composite cylinder made up of Aluminium and Steel.

If we now twist the cylinder, the cross section is again going to rotate. The shear strain γθzwill be the
same as earlier since it is completely prescribed by applied deformation and thus varies continuously.
However, when we calculate τθzby equation (46), we will have different shear modulus for aluminium

and steel. Thus, there will be a discontinuity in the shear stress at r = r1. The plot of variation of γθzand
τθz in the cross-section is shown in Figure 6.

Figure 6: Variation of shear strain and shear stress in the cross section of the composite cylinder.

The variation of γθz is shown by the continuous blue line while the variation of τθz is shown by the
discontinuous red line (which is piecewise linear): the slopes of the two straight lines are differentand
proportional to the shear modulus of the corresponding material. There is no jump in shear strain
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because the steelandaluminum regions togetheract as a single body as they are assumed tobe attached

rigidly.
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