Solid Mechanics
Prof. Ajeet Kumar
Deptt. of Applied Mechanics
IIT, Delhi
Lecture - 21
Extension-Torsion-Inflation in a Hollow Cylinder (Contd.)

Hello everyone! Welcome to Lecture 21! We will continue with our discussion on Extension-Torsion-
Inflation in a hollow cylinder. In the previous lecture, we had derived the reduced form of equilibrium
eqguations which we needto solve to obtain the displace ment.

1 Recap (start time: 00:27)

We had derived the following simplified form of equilibrium equations when the cylinder is in static
equilibrium and not subjected to any body force:

d'grr + Trr — Tpg — Cl, (1)
ar r
do..
E — 2
o _ 2

We had also obtained the following expressions of stress components in terms of displacement
components:

o = Mul+ o ul) + 2l 3
-
u, U,
ogg = Mu.+—+ul)+2p—, (4
- -
u, ,
0., = ,AMu.+—+ul)+2pul (5)
-
Trd = D? (6)
T = 0,
: ' (7)
G Qr
Ti- == T .
- L (8)
2 Mathematical form of u(start time: 01:05)

As u;and urare functions of zand rrespectively, we can rewrite equation (5) as

Up
.. = (A+2p)ul + A (u: + —J) . (3)
N, r
depends on = depends on r
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From equation (2), we can infer that 0,;does not dependon z. Also, 0,;does not have any term that has
dependence on 4. Thus, it is a function of r only, i.e.,

; ;o Uy (10)
0.. = (A 2p)u. + }\(u,, + —) = f(r).
\_v_} T
depends on =

depends on r

Accordingly, the term dependent on z in the LHS must be a constant or u;” must be a constant. As u,’
denotes longitudinal strain in axial direction, we will denote it by €, an unknown but constant parameter.

3 Mathematical form of u(start time: 05:04)

The expressions of o-and ossgiven in (3) and (4) now become

Uy
o = Mul + —+ €) + 2, (11)
Uy Uy
ogp = MNu.+——+¢€)+2u— (12)
r -
Subtracting them, we get
Opr — Ogg = 21 (u: — i) (13)
-
Likewise, taking the partial derivative of equation (11) with respect to r, we get
00y, LAY " .
o= (ur + 7) + 2pu), (as € is constant) (14)

Now, we can plug equations (13) and (14) into equilibrium equation (1) to get

N wp\’ o A
w, + — ) +2pu, +2p(u, — — ) =0
, ,

7 li q li
= )\(u;. + u_,) + 2 (ui. + u_,) =0
. .
y / !
= (u; + “—) —0= (l(u,.r)’> ~0.
r r (15)

Up C . .
We can infer from this that <u§, + 7_'> is also a constant, say C. Further, from the definition of strain

Uy
components, we know that €, = U, and €0 = P Thus, we get

u, r
u-j. + — =€+ ew=0C (16)

Integrating (15) twice, we finally get
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C N D
U, = —r—+—
2, r (17)

where C and D are the unknown integrating constants.
4 Solution for o,-and oy (start time: 09:51)
4.1 Mathematical form (start time: 09:51)
Let us add equations (11) and (12):
of s U
Tppr + Opgg = 2(;’\ + 1) (Ur + f_) + 2Xe

= 2(A+p)C+2Xe=A (aconstant) (18)

Thus, the sum of radial and hoop stressesturns out to be a constant through the thickness of the tube,

howeverthey individually vary through the tube’s thickness. Let us now solve the equilibrium equation
(1) directly in terms of stress components as follows:

00,~,- Orr — 090
+

= 0
or r
00’,,,. 20” Orr + 0o — 0
or 7 r
00y fo i A
+ 2 = —
or 7 r (using (18)). (19)

From equation (11), we know that o is a function of ralone. Thus, the partial derivative with respect to
r becomes total derivative, i.e.,

do,. N 20,.,. A
dr T
1d 9 A
= 5 \Trr = —
2 d,‘,‘(a ) )
= (o,.7°) = Ar
7 _"1 2
= T T = 7; +B
) A B
Or, Opp = = + 2 and oy = 5 2 (using (18)) (20)
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4.2 Application of boundary conditions (start time: 14:48)

Whenever we solve a differential equation, we get unknown integrating constants. To obtain those
constants, one has to apply boundary condition. Similarly, we need to identify the boundary conditions
for our deformation problem. Figure 1 shows our cylinder which is subjected to pressure on its inner
surface. The pressure acts as an externally applied known traction and thus can be used as one of the
boundary conditions. Similarly, thereis zero traction on the outer surface of the cylinder which provides
the otherboundary condition. We had seen earlier that the internal traction due to stressat the surface
point equals the externally applied traction (t#*P) through the following relation:

gn-=_twe (21)
O:M:\ % (1)
0o = > . 1 o) (|

Figure 1: Pressure acts on the inner surface of our hollow cylinder. The cross section of the cylinder is
shown on the right.

The outward surface normal of the inner curved surface (at r = r1) points in -r direction, i.e.,

—1
[ﬂ] (r,6,2) - U
0
(22)
Similarly, the externaltraction acts radially outward there, i.e., in the +r direction. So
P
app —
[t ](TAO.:) =0
0 (23)

Upon writing equation (21) in cylindrical coordinate system and further substituing the above two
results, we get:

Orr Treg  Trz -1 P —Orr P
Tor 090 Toz O = (0= |-Te| =10
Tor Tz Oz 0 0 —Ter 0
or, or{ri) = =P, Tod{r1)0, Tu(r1) = 0. (24)
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Similar analysis for the outer surface where no external traction is presentyields

O'rr(rZ) =0, Tgr(rz), Tzr(rz) =0. (25)

We have thus obtained the following two boundary conditions for o to obtain the unknownintegrating
constants in its expression (20):

Orlri) = -P, Onlr2) = 0. (26)
4.3 Final Solution (start time: 21:02)

Upon plugging the boundary condition (26) in equation (20), we get the following set of equations:

A B A B (27)
C4Z =P 42 =0
5 " r? 9t r3
solving which we get
.2 2,2
A=2P 271 - B:_P 2’]’22 (28)
,2 - T'-l "2 - 7.1

For a positive internal pressure P, we always have A > 0 and B < 0. Using (20), we can now plot the
variation in both o and ggythrough the tube’s thickness as shown in Figure 2. The red curve shows the
variation of oggwhile the black curve shows the variation of o
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Figure 2: Plot showing variation of o,-and ggywith r
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As r - oo, both o and ogyapproach gwhich is a positive number for positive pressure P although r is

feasible only between ri and r.. From the boundary condition, we also know directly from boundary
condition that oris —P at r = riand 0 at r = r2. As the sum of oand ogyalways has to be A, the curve for
Ogg is the mirror image of o about the blue dashed line. Furthermore, oand ogdepend only on P and
the radii as can be seen from equations (28) and (20). If there is no internal pressure, o, and gy will
simply vanish even if axial force and twisting moment are present. Thus, we infer that extension and
torsion cannot generate o and oy. This happens because the cross section is free to relax during
extension and torsion of a circular cylinder. For cross-sections of irregular shape however, we can have
non-zero orand ogevendue to extension and torsion.

5 Final solution for u/(start time: 29:27)

We have tofind the constants (C,D) in the expression (17) to obtain complete solution of u.. The constant
C can be found using (18) as follows:

r2
r3 —r?
A P r?
- /\—i—/z.E+ AN+ pri—r?

200+ p)C +2 e = A=2P

=C (29)

To get D, we can use equation (11) as shown below:

o = Mul+ % +€) + 2puu,

- A(C+e)+2y<g—§> (using (17)

D
= (/\+;L)C+)\e—2ur—2

A D

9 r (using (18)) (30)

(V]

Comparing this with equation (20), we get:
B D

2 r2
-B P rir:
2

2
=D = — =_—= .
2p 2urs —r}

(using (28)) (31)

Thus, urfinally becomes

—A P J,IE P i“%?'g
U, = - I 32
) (2(‘)\ ) N 2(A+p) 13— ?'12); " ur ry — 13 (32
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Upon setting P=0in (32), we get

-
Up = ————F€T. (33)
2N+ p)
When we relate Lame’s constants (A and u) with Young’s modulus(E), Poisson’s ratio(v) and shear
modulus(G), it turns out that

A
V= m (34)
substituting which in the above expressionfor u,, we get
Up = —VET (35)
The radial longitudinal strain for P = 0 thenturns out to be
€rp = U, = —VE. (36)

This expression is exactly what we expect - radial displacement has arisen due to Poisson’s effecteven
in the absence of pressure.

6 Solution for u;and uy(start time: 36:30)
As u;is only a function of z and axial strain u;’is a constant, integrating axial strain leads to

U, = €z. (37)

w

Here we assumed that u; vanishes when z = 0 because the axial displacement of the cylindrical mid-
section (z=0) is zero by symmetry. We had also derived the expression for ugin the previous lecture as

Q
Uy = z'r,: (38)

We need to finally obtain axial strain € and end-to-end rotation Q in terms of prescribed quantities
(applied axial force Fand Torque T).

6.1 Relating torque and end-to-end rotation (start time: 37:37)

A typical cross-section of the hollow cylinder is shown in Figure 3. The cross-section normal points in the
z direction. So, 0z, T9;and T, act on it.
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Figure 3: A typical cross-section of the hollow cylinder: tg-acts in 8direction and contributes to torque.

We had found t,;to be zero. Thus, we need to analyze oz;and ty- only. If the traction on any point on the
cross-section is represented by t, then the moment due to this traction about the cross-section center
'O’ will be given by the integration of r x t for each small area elementin the cross section (r represents
the position vector of the area element from the center). If Qodenotesthe area of the cross section, the

moment M will be given by
M = // re, x t(r,0)dA
J JQq

= / / re, X t(r,0)rdrdf
J Jay
- // re, X [0..e, + To.e4|dA (39)
Qo

The torque T is simply the component of moment along the axis, i.e.,

Qr
= ././Q(, rTp, dA = .//Q(, ‘IGT dA (using (8))
Q[f -
= G_ // 7'2(114. 40
LJ/a, (40)

The term [[, r°dA isthe polar momentof area (ageometrical quantity) andis denoted by J. Thus, we
finally get

Q) TL
—GQJs _ - (41)
T GJL = () i
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6.2 Relating axial force and axial strain (start time: 44:23)

To find €, let us obtain the axial force in the cross-section through the integration of o, i.e.,

F = / / o..dA
Qg

= // A (u: + 4 u’) + 2,u.-u’;] dA  (using (5))
Qo L r

= // AC + (A + 2;f)1£i:| dA (using (16))
g

= // AC + (A + 2}’_{)6:| dA = ACA+ (A +2p)eA. (42)
Qg

Here, A denotes the cross-sectional area. As we know the value of C from equation (29), we are finally
able to relate axial force F with axial strain €. In the special case when P =0, the expression of C becomes
simpler which yields

3N+ 2u

F:MAGZEAE (43)

A
where Eis the Young’s modulus of elasticity. In case of zero pressure, € can also be obtained in a simpler
way. We know that when P =0, we get o= gg= 0. Using three-dimensional Hooke’s law, we can then
write

1 1 3
€, = E(a:: — (o + 0p)) = E(U“ —ux0)= (TE~‘~
= 0., = Fe. (44)

The axial force F for such a situation is then

F= // 0., dA = FAe. (45)
Qo

We have finally derived the relationship between Q and T as well as the relationship between € and F.
The constant EA is called stretching stiffness while the constant GJ is called torsional stiffness, i.e.,

F = EA €
axial foree stretching stiffness  axial strain
0
Tr = GJ —
—~— S~ L
torque torsional stiffness S~

twist
The axial strain and twist are constant in the cross section of the cylinder.
7 Variation of yy;and 1y in the cross section (start time: 50:18)

We know
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Q Q
jo: = 7T Toz = G = Gz-r. (46)

Note that both the quantities vary linearly with r. This means that whenever we twist a cylinder/bar,
shear strain and shear stress vary linearly in the cross-section as we go outwards from the center (see
Figure 4).

Figure 4: Variation of shear strain and shear stress in the cross section of the cylinder.

7.1 Special case: composite cylinder (start time: 52:10)

We can also think of a composite cylinder made up of two different materials as shown in Figure 5.
Supposing the inner part (upto radius ri1) is made up of Aluminium and the outer part is made up of Steel.
The materials are glued together.
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Figure 5: The cross section of a composite cylinder made up of Aluminium and Steel.

If we now twist the cylinder, the cross section is again going to rotate. The shear strain yq, will be the
same as earlier since it is completely prescribed by applied deformation and thus varies continuously.
However, when we calculate 1y, by equation (46), we will have different shear modulus for aluminium
and steel. Thus, there will be a discontinuity in the shear stress at r = r1. The plot of variation of y4;and
Tyzin the cross-section is shown in Figure 6.
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Figure 6: Variation of shear strain and shear stress in the cross section of the composite cylinder.
The variation of yg;is shown by the continuous blue line while the variation of ty, is shown by the

discontinuous red line (which is piecewise linear): the slopes of the two straight lines are differentand
proportional to the shear modulus of the corresponding material. There is no jump in shear strain
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because the steeland aluminum regions togetheract as a single body as they are assumed to be attached
rigidly.
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