Chapter 13: Bituminous Mix Design Methods

13.1 Introduction

Bituminous mix design is a crucial aspect of pavement construction and maintenance. It determines the proportioning of various components—aggregates, bitumen, fillers, and additives—to produce a bituminous mixture with adequate strength, durability, workability, and resistance to environmental factors and traffic loads. A well-designed bituminous mix ensures optimal performance, long service life, and cost-effectiveness of flexible pavements.

There are several bituminous mix design methods in practice globally. Each method follows a systematic approach to balance various mix parameters like stiffness, stability, voids, durability, and resistance to fatigue and rutting. This chapter provides an in-depth understanding of the different mix design methods, materials involved, testing procedures, evaluation parameters, and modern developments in mix design techniques.

13.2 Objectives of Bituminous Mix Design

- To achieve a bituminous mixture with adequate stability to resist deformation.
- To ensure sufficient durability to withstand environmental actions like water damage and oxidation.
- To maintain the right level of **flexibility** and **fatigue resistance** under repeated loading.
- To attain **resistance against rutting**, cracking, and stripping.
- To ensure proper void content for permeability and durability.
- To optimize **bitumen content** for economic and performance efficiency.

13.3 Components of Bituminous Mix

13.3.1 Aggregates

- Coarse Aggregates: Provide strength and load distribution.
- Fine Aggregates: Fill voids and improve workability.
- Mineral Filler: Fills micro-voids and enhances binder-aggregate adhesion.

13.3.2 Bituminous Binder

- Acts as a binding agent and provides waterproofing.
- Common types: VG-30, VG-40, CRMB (Crumb Rubber Modified Bitumen), PMB (Polymer Modified Bitumen), etc.

13.3.3 Additives and Modifiers

- Anti-stripping agents, warm mix additives, rubber, polymers.
- Used to enhance mix properties.

13.4 Bituminous Mix Design Parameters

- Stability: Resistance to deformation under traffic.
- Flow Value: Deformation before failure.
- Air Voids (Va): Space between coated aggregates.
- Voids in Mineral Aggregate (VMA): Total void space within aggregates.
- Voids Filled with Bitumen (VFB): Percentage of VMA filled with bitumen.
- Optimum Binder Content (OBC): Bitumen content at which mix properties are balanced.

13.5 Common Bituminous Mix Design Methods

13.5.1 Marshall Mix Design Method

Most widely used in India and several countries.

Procedure:

- 1. Selection of Aggregates and Bitumen.
- 2. **Preparation of Specimens** with varying bitumen content (e.g., 4%, 4.5%, 5%, 5.5%, 6%).
- 3. Compaction using Marshall Hammer (75 blows each face).
- 4. **Testing**: Stability and flow test.
- 5. Calculations: Va, VMA, VFB.
- 6. Plotting Graphs: Bitumen content vs properties.
- 7. **Determination of OBC** based on criteria.

Marshall Criteria for Bituminous Concrete (IRC: SP: 53-2010):

Property	Range
Stability	Min 9 kN
Flow	2–4 mm
Va	3–5%
VMA	Min 14%
VFB	65-75%

13.5.2 Superpave Mix Design Method

Developed under the SHRP (Strategic Highway Research Program) in the USA.

Features:

- Incorporates climatic conditions and traffic loading.
- Focus on **performance grading** of binders.
- Uses gyratory compactor instead of Marshall hammer.

Steps:

- 1. Selection of aggregates and PG binder.
- 2. Compaction using Superpave Gyratory Compactor.
- 3. Volumetric analysis at different binder contents.
- 4. Performance testing: Rutting, fatigue, moisture susceptibility.

Advantages:

- Better performance prediction.
- Suitable for high traffic and extreme climate regions.

13.5.3 Hveem Mix Design Method

Popular in western US states, developed by Francis Hveem.

Key Features:

- Uses **stabilometer** for stability measurement.
- Emphasizes aggregate quality and cohesion.

Steps:

- 1. Selection of materials.
- 2. Kneading compaction of specimen.
- 3. Stability testing with stabilometer.
- 4. Determination of OBC.

13.6 Modified Bituminous Mixes

13.6.1 Polymer Modified Bitumen (PMB) Mixes

• Improved elasticity, temperature susceptibility, and aging resistance.

13.6.2 Crumb Rubber Modified Bitumen (CRMB) Mixes

• Utilizes recycled rubber; better fatigue and rutting resistance.

13.6.3 Warm Mix Asphalt (WMA)

- Produced at lower temperatures.
- Advantages: Lower emissions, energy savings, improved workability.

13.7 Laboratory Tests for Mix Evaluation

- Marshall Stability and Flow Test
- Indirect Tensile Strength (ITS) Test
- Moisture Susceptibility Test (Tensile Strength Ratio)
- Rutting Test (Wheel Tracking Device)
- Fatigue Test (Four-Point Bending Beam Test)

13.8 Factors Affecting Bituminous Mix Design

- Aggregate gradation
- Bitumen grade
- Mixing and compaction temperature
- Air void content
- Binder-aggregate compatibility
- Environmental conditions

13.9 Recent Advancements in Mix Design

- Use of Reclaimed Asphalt Pavement (RAP)
- Intelligent Compaction Systems
- Foamed Bitumen Technology
- Nano-modified Bitumen
- Sustainable practices using plastic waste, industrial by-products

4