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Strain Matrix in Cylindrical Coordinate System

Hello everyone!Welcome to Lecture 19! In this lecture,we will see how the strain tensor is represented

as amatrix in cylindrical coordinate system. In the previous two lectures, we had derived the equations
of equilibrium in cylindrical coordinate system and the idea was to solve the deformation problem in
cylindrical coordinate system. Later on, we will also relate stress with strain in this coordinate system.

1 Strain matrix in Cylindrical Coordinate System (start time: 01:02)

The strain tensor (ϵ) is definedas

(1)

We can recall its matrix form in Cartesian coordinate system:

(2)

Let us work out the same in cylindrical coordinate system.

1.1 Representation of gradient (start time: 03:03)

We need to first express gradients in cylindrical coordinate system. In Cartesian coordinate system, the
gradient of a quantity is given by

(3)

whereas its definition in cylindrical coordinate system is
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(4)

Notice that the partial derivative with respect to θ is divided by r as θ is non-dimensional and we are

taking the gradient in space. We will use the above form to obtain the gradient of the displacement
vector u.

1.2 Representation of displacement (start time: 05:05)

The displacement vector can be written in cylindrical coordinate system by decomposing it along
cylindrical basis as follows:

u = urer+ uθeθ+ uzez (5)

To understand the physical significance of various components, a section of an arbitrary body (in its
reference configuration) parallel to z plane is shown in Figure 1.

Figure 1: A typical section of an arbitrary body parallel to z plane: a point with coordinates (r,θ) with
respect to the origin of cylindrical coordnate system is also shown along with the componentsof

displacement along basis directions.

A point with coordinates (r,θ) is also shown. After deformation of the body, the displacement of this
point in the radial direction is ur, displacement in the θ direction is uθand displacement in the z direction

(coming out of the plane) is uz.
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1.3 Representation of displacement gradient (start time: 06:27)

Now,we can plug in the displacementvector given in equation (5) in the gradient definition (4) to obtain
the following:

(6)

For the



and




terms here, the basis vectors act as a constant as they change only with θ. The

derivatives of basis vectors with respect to θ were derivedearlier which are

(7)

Upon substituting them in equation (6), we get

We have gotten two extra terms here due to change in basis vectors. We can use the above equation to
obtain the displacement gradient matrix in cylindrical coordinate system. The coefficient of the basis

tensor ei⊗ ej goes into ith row and jthcolumn of the matrix to finally yield the following:

(9)

158



1.4 Representation of Strain tensor (start time: 16:09)

Now, we can use equation (1) to obtain strain matrix which is the symmetric part of the displacement
gradient matrix derived above. It turns out to be the following:

(10)

If we compare this with the strain matrix in Cartesian coordinate system given in equation (2), we can
notice extra terms here.

2 Physical significance of strain components (start time: 19:14)

2.1 Significance of ϵrr (start time: 19:20)

(11)

This is called radial longitudinal strain or radial strain simply. To visualize this, we can think of a typical
cross section of a hollow cylinder as shown in Figure 2.
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Figure 2: A typical cross-section of a hollow cylinder with longitudinal strains for two line elements, one
in the radial direction and the other in the θ direction also shown.

The elongation of a radial line element gives us ϵrras shown.

2.2 Significance of ϵθθ (start time: 21:03)

(12)

This strain is also called hoop strain or circumferential strain. This is the elongation of a line element

directed along θ direction (circumferential line element) as shown in Figure 2. The circumferential strain
has two contributions. The partial derivative term is intuitive because longitudinal strain along a
direction is understood as the derivative of displacement in that direction with respect to the same

direction. The other term is the unusual term which we now try to understand physically. Think of a
displacement which has only radial component, i.e.,

ur≠ 0, uθ= 0, uz= 0 (13)

For such a displacement, if we find ϵθθusing equation (12), we will get

(14)

Figure 3 again shows a typical cross section of a hollow cylinder. For the displacement given in (13), all
points in the cross-section simply displace radially.
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Figure 3: A typical cross section of a hollow cylinder: the circumferential lines for both reference and
deformedconfigurations are shown for the displacement function in (13)

We have also drawn a circumferential line both before and after deformation. All points on this line

initially at radial coordinate r displaces to radial coordinate r+ur. We can notice that the length of the
original circumferential line (shown in red) has increased generating longitudinal strain in it, i.e.,

(15)

which by definition is ϵθθ. This specific case helps us to visualize the extra termpresent in the formula for
hoop strain. Despite uθbeing zero, the extra term generatesnon-zero ϵθθ.

2.3 Significance of γrθ (start time: 27:19)

We can see from the strain matrix that we have an extra term in ϵrθalso, i.e.,

(16)

This denotes the change in angle between two initially perpendicular line elementsdirected along erand

eθ. Figure 4 shows a typical cross-section of a cylindrical body. At an arbitrary point, we consider two line
elementsdirected along er and eθ respectively. You should try to figure out the physical meaning of the
extra term that we get in γrθ.
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Figure 4: Two line elements are consideredat a point on the cross section of a cylindrical body directed
along er and eθ

2.4 Significance of other components (start time: 29:37)

The other strain components have no unusual term. The quantity γrzgives us shear strain between line
elements along er and ez, γθzgives us shear strain between line elements along eθ and ez and finally, ϵzz
gives us longitudinal strain of a line elementdirected along ez.

3 Relating stress and strain in cylindrical coordinate system for isotropic materials (start time:

30:08)

Once we have stress and strain matrices in cylindrical coordinate system, let us relate them for an
isotropic material. We know how to relate stress and strain in Cartesian coordinate system. We also

know that for an isotropic material, all material properties are independent of the direction. Thus, the
relationship between stress and strain componentsmust also be independentof the coordinate system.
This means that we could choose any set of three perpendicular directions and resolve our stress and

strain tensors in those directions but the mathematical form of their relationship would remain
unchanged. For example:

(17)

We can obtain all other relations in a similar way leading to
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(18)

We emphasize that the above relationship would have a different mathematical form if the material
were not isotropic.

Having obtained stress and strain components and their relation in cylindrical coordinate system,wewill
learn in the next few lectures how using them for deformation of cylindrical bodies leads to simplified
form of equations. Such problems could also be solved in Cartesian coordinate systembut the equations

would not simplify then.
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