Chapter 10: Writing and Executing First Advanced
Program

Introduction

After understanding the fundamentals of programming languages, object-oriented paradigms,
data structures, and design patterns, the next logical step is to apply that knowledge to build an
advanced, real-world-level program. This chapter is designed to bridge the gap between
theoretical knowledge and practical implementation.

In this chapter, we will guide you through the planning, development, and execution of your
first advanced program—integrating file handling, OOP principles, exception management,
multi-threading, and optionally GUI or database components. You will also explore best
practices in writing modular, reusable, and scalable code.

10.1 Setting Up the Advanced Development Environment

Before starting any advanced program, ensure that your development environment is ready. This
includes:

10.1.1 Choosing the Right Language and Tools

e Language: Java, Python, or C++ (commonly used for advanced programming).
e IDE: IntelliJ IDEA, Eclipse, PyCharm, Visual Studio Code.

¢ Build Tools: Maven, Gradle (for Java), or pip/venv (for Python).

e Version Control: Git, GitHub/GitLab.

10.1.2 Configuring the Project

e Create project directory and initialize Git.
e Set up package structure (e.g., com.myapp.main, com.myapp.utils, etc.).

e Include dependency configuration file (like pom.xml, build.gradle, or
requirements.txt).

10.2 Understanding the Problem and Designing the Solution
10.2.1 Problem Statement

Let’s assume you’re developing an Employee Management System (EMS) that includes the
following:

e Add, update, delete employee records.

e Fetch reports (based on department, salary, etc.).
e Store/retrieve data from a file or simple database.

10.2.2 Requirement Analysis
Break down the problem:

e (Core functionalities

e Input/output specifications

e Security and exception handling
e UI (console/GUI/web)

e Performance constraints

10.2.3 Software Design
Use design patterns and modular design:

e Class Diagrams: Define Employee, Manager, DatabaseHandler, ReportGenerator.

e Design Patterns Used: Singleton (for DB connection), Factory (for object creation),
DAO (for data access abstraction).

10.3 Writing the Program

10.3.1 Class Creation and Structure

// Employee.java

public class Employee {
private int id;
private String name;
private String department;
private double salary;

public Employee(int id, String name, String department, double salary) {
// Constructor

}

// Getters and Setters
}

// EmployeeManager.java
import java.util.*;

public class EmployeeManager {
private List<Employee> employeelist = new ArraylList<>();

public void addEmployee(Employee e) {
employeelist.add(e);

}

public void deleteEmployee(int id) {
// Remove logic
}

public Employee searchById(int id) {
// Search logic
}

}

10.3.2 File Handling / Persistence

// FileHandler.java
import java.io.*;

public class FileHandler {
public void saveToFile(List<Employee> employees) {
// Write serialized list to file

}

public List<Employee> loadFromFile() {
// Read from file and deserialize
}
}

10.3.3 Exception Handling

try {
Employee e = manager.searchById(101);

if (e == null) throw new Exception("Employee not found.");
} catch (Exception ex) {
System.out.println("Error:

+ ex.getMessage());

}
10.3.4 Multithreading (Optional, for autosave)

class AutoSaveThread extends Thread {
public void run() {
while (true) {
try {
Thread.sleep(60000); // save every minute
// Trigger file save
} catch (InterruptedException e) {
// Handle
}

10.4 Executing the Program
10.4.1 Compilation and Build

e Compile Java classes using javac or build via Maven/Gradle.

e Ifusing Python, ensure all dependencies installed with pip install -r
requirements. txt.

10.4.2 Running the Program

java Main
Or in Python:
python main.py

10.4.3 Testing

e Write unit tests using JUnit (Java) or pytest (Python).
e Test each module independently.
e Perform integration testing.

10.5 Sample Output

Welcome to Employee Management System
1. Add Employee

2. Delete Employee

3. Search Employee

4. Generate Report

5. Save and Exit

Enter your choice:

10.6 Best Practices for Writing Advanced Programs

e Follow SOLID principles.

e Use modular and layered architecture (Model, Service, DAO, UI).
e Ensure code reusability and low coupling.

e Implement logging and error reporting.

¢ Include documentation and comments.

10.7 Summary

In this chapter, you’ve written your first full-fledged advanced program, integrating core
programming concepts with file handling, object-oriented design, exception handling, and
optional multithreading. You’ve also understood how to structure a project, use version control,
and execute your application effectively.

This chapter lays the foundation for future development of enterprise-level applications. You’re
now prepared to transition into advanced domains like web development, data science, or
systems programming with the right programming mindset.

	Chapter 10: Writing and Executing First Advanced Program
	Introduction
	10.1 Setting Up the Advanced Development Environment
	10.1.1 Choosing the Right Language and Tools
	10.1.2 Configuring the Project

	10.2 Understanding the Problem and Designing the Solution
	10.2.1 Problem Statement
	10.2.2 Requirement Analysis
	10.2.3 Software Design

	10.3 Writing the Program
	10.3.1 Class Creation and Structure
	10.3.2 File Handling / Persistence
	10.3.3 Exception Handling
	10.3.4 Multithreading (Optional, for autosave)

	10.4 Executing the Program
	10.4.1 Compilation and Build
	10.4.2 Running the Program
	10.4.3 Testing

	10.5 Sample Output
	10.6 Best Practices for Writing Advanced Programs
	10.7 Summary

