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Lecture - 24

Bending of beams (contd.)

Hello everyone!Welcome to Lecture 24! We will continue with our discussion on bending of beams. In
the previous lecture, we learnt about pure bending of beams in which bending moment was constant
along the beam. In this lecture, we will discuss non-uniformbending of beams.

1 Non-uniform Bending (start time: 00:43)

1.1 Introduction (start time: 00:58)

In case of pure bending, we had the same moment acting on every cross-section. For this reason, pure

bending is also called uniform bending. We will now move on to non-uniform bending of a beamwhere
bending moment is not uniform along the length of the beam. In the previous lecture, we had derived
the following relation for bendingmomentM and curvature κ:

M = EI κ. (1)

If bending momentM is not constant along the length, bending curvature will also not be constant. We
now consider another case of loading where we can also have distributed load b(x) acting on the beam

as shown in Figure 1.

Figure 1: A beam acted upon by a distributed load b(x)

The load b(x) is assumed to act in +y direction. Let us cut a small part of the beam of length ∆x at a

distance x from the clamped end and (see the red region in Figure 1) and further draw its free body
diagram as shown in Figure 2.
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Figure 2: Free body diagram of a small part of the beam shown in red in Figure 1.

On this section, apart from distributed load, there will be bending moment as well as shear force acting

at the two ends. By convention, for the cross section having normal in +x direction, shear force acting in
+y direction is considered as positive while for the cross section having normal in −x direction, shear
force acting in −y direction is considered as positive. We denote this shear force by V. The center of the

left cross-section is marked asO and the position of a general point in the sectionof the beam is denoted
by ξ which varies from x to x + ∆x. Due to static equilibrium, the net moment on this part of the beam
must be zero about any point. In particular, let us do moment balance about O:

(2)

As everything is pointing in e3 direction, we can easily extract e3 component of the equation to get the
following scalar equation:

(3)

Since this equation holds for an arbitrary part of the beam having arbitrary length ∆x, we can divide both
the sides by ∆x and take the limit ∆x→ 0 to shrink the section to a single point, i.e.,

(4)
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We have derived an important relation between the variation of bending moment and shear force. It
says that whenevermomentvaries along the beam, there has to be a non-zero shear force acting on the

beam’s cross-section. The case of zero shear force corresponds to the case of pure bending where
moment is constant throughout the length of the beam as we saw in the last lecture.

1.2 Variation of σxx in the cross-section (start time: 11:20)

For the case of non-uniform bending, the variation of σxx can be taken to be the same as in the last
lecture. We just have to use local bending moment in the formula, i.e.,

(5)

In the above expression, y representsdistance from the neutral axis as earlier.

2 Variation of τyx in the cross-sectional plane (start time: 12:07)

The shear components of traction in the cross sections are τyxand τzx. As there is an overall shear force
V(x) acting on the cross section in y direction, τyx must be non-zero. Let us now try to obtain its

distribution in the cross-section.

2.1 Assumption (start time: 13:40)

The stress component τyx in a cross section can be a function of both y and z in general. However, we

make a simplifying assumption that it is only a function of y and not of z. This means that τyxwould be
the same at all points on lines parallel to z axis as shown in Figure 3 - differenthorizontal lines will have
different τyx though.

Figure 3: A typical cross section of the beamwith variation of τyxshown such that it is a function of y

alone

2.2 Analysis (start time: 16:44)

To find the distribution of τyx, we cut a small cuboid element from the beam as shown in Figure 4 in

green.
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Figure 4: A cuboid element cut from the beam.

A zoomed viewof this green cuboid with all external loads acting on it is shown in Figure 5.

Figure 5: Free body diagram of the cuboidal element cut from the beam shown in Figure 4.

The bottom surface (−y plane) of this element is at a distance of y from the neutral plane where as its

left face ( −x plane) is at a distance x from the beam’s clamped end. Its free body diagram is shown in
Figure 5. The top face is the +y plane where the distributed load b(x) acts. The bottom face is the −y
plane and traction components τxy, σyy and τzy act on it in −x, −y and −z directions, respectively. The +z

and −z faces (side faces) are part of the lateral surfaces of the original beam. As external forces are
assumed to be applied only on the +y plane of the beam, the +z and −z faces of the element are traction
free. On the +x face, we have bending stress σxx that we have derived already. We also have τyxand τzx
acting there. Similarly, σxx, τyxand τzxact on −x plane but in negative directions. In order to find τyx, we
justneed to balance the forceson this small cuboidal element in x direction. Let’s first consider the force
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due to σxx on the +x plane. We also introduce coordinates ξ, η and γ for x, y and z variations from the
centroid of the cross-section of the beam at the clamped end. Thus, any general point on the cross

section of the beam has (y,z) coordinates as (η,γ) as shown in Figure 4. The total force due to σxx on the
+x face of the small cuboidal element will be obtained by its integration over the area of this face. As

evident from Figure 4, η varies from y to


2
and γ varies from

−

2
to



2
on +x and −x faces of the element.

Thus, force due to σxx on the +x and −x faces will be

(6)

The +z and −z faces of the element being traction free and do not contribute to force in any direction.

The force on +y face has no component in x direction since the externaldistributed load acting there is
assumed to act along y direction. However, −y face has τxy acting on it which contributes to force in x

direction. The local coordinate ξ varies from x to x + ∆x while γ varies from
−

2
to



2
for y faces of the

element. Thus, the net force due to τxy in x direction will be

(7)

Summing all the forces in x direction to zero, we get

(8)

We can also substitute the following expression for σxx

(9)

in equation (8), which yields

(10)

As the first integral is over x planes,Mzand Izzact as constants. To make things simpler, we assume that
the beam’s cross sectiondoesnot vary along its length. Thus, Izzdoesnot vary along the length. Similarly,

we assumed initially that τxy doesnot vary with z or γ coordinate. All these simplifications lead to

(11)

As the above equations holds for cuboid elementof any length ∆x, we can shrink its length such that ∆x

approaches zero. As always, we first divide the above equation by ∆x and then take limit ∆x→ 0, i.e.,
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(12)

Notice the simplification in second integral. As ∆x→ 0, the range of the second integral shrinks to point

x itself. So, the integrand τxy(ξ,y) becomes a constant, i.e., τxy(x,y) and comes out of the integral which is
then multiplied by the length of the integration interval ∆x and furtherdivided by ∆x. The integral in the
first term above is y-moment of x face of the cuboid element which is also shown as the shaded area in
Figure 7.

Figure 7: The cross section of the beamwith the shaded region representing the area of the x face of
the small cuboidal element.

We denote this moment by Q(y): a function of y alone. As we change y, the shaded area changes and

thus the first moment of the shadedarea also changes. Thus, the final expression for τxy becomes

(13)

which is same as τyx, the shear component in the cross-sectional plane. Here, we have allowed b, the
width of the cross section, to vary with y. This enables us to use this result for cross-sections of beams

such as I-beams. If we compare equations (5) and (13), we see that while bending stress σxx is
proportional to moment, shear stress τyx is proportional to shear force.

3 Variation in τyx for some representative cross-sections (start time: 43:40)

3.1 Rectangular cross-section (start time: 43:40)

A typical rectangular cross section is shown in Figure 8 and we want to find the value of τyxat a distance
of y from the neutral axis.

τxy (x,y) =
V (x)Q (y)
Izz b(y)
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Figure 8: A rectangular cross section for the calculation of τyx.

As τyx is independentof z, it will have the same value over lines parallel to the z axis. For applying equation
(13), we need to find Q(y), b(y) and Izz. As this is a rectangular cross section, width b(y) is constant and
equal to b. We have already derived Izz for a rectangular cross section in one of the previous lectures to

be

(14)

We only need to obtain expression for the first moment Q(y) of the area above y line where τyx is to be

calculated (shownas the shaded region in Figure 8). The first momentwill simply be y coordinate of the

centroid of the shaded areamultiplied by the shaded area. As the height of the shaded area is
ℎ

2
- y, its

centroid will be at half of this distance from the y line and hence at

(15)

from the neutral axis. Thus, Q(y) becomes

(16)

while τyxbecomes

(17)

AsV is the total shear force on the cross section and bh is the area of the cross section,


ℎ
equals average

shear stress τavg while τyxat the neutral axis is
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Likewise, at the periphery of the cross section , τyx is

(18)

The variation of y vs τyx is shown in Figure 9.

Figure 9: Plot of y vs τyx for a rectangular cross section

We observe that due to the presence of shear force in the cross section, shear stress is maximum at

centroid and vanishes at the two ends. There is another way to realise the vanishing of shear stress at

the ends. The points y =
ℎ

2
,
−ℎ

2
also lie on top and bottom surfaces of the beam, respectively. There is no

external traction on the bottom surface whereas on the top surface, the distributed load b(x) acts in y

direction. Thus, τxy is zeroat both topand bottom surfaces. However, due to τxy and τyxbeingequal, shear

stress on cross-sectional plane vanishes at y =
ℎ

2
,
−ℎ

2
.

3.2 Circular cross-section (start time: 54:30)

In the derivation for rectangular beams, we had assumed that τyx is independent of z coordinate. For a
circular beam however, this assumption cannot be used. Consider the beam shown in Figure 10 and

analyze one of its cross-sections.
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Figure 10: A radial distributed load applied on a circular beam

If τyx is constant along lines parallel to z axis, the shear stress will be as shown in Figure 11.

Figure 11: τxy on a cross section of a circular beamwith the assumption that τxy is independentof z.

Basically, it is non-zero even at the ends. Let us work with cylindrical coordinate system and assume a

radial distributed load is acting (e.g., pressure load) which could also be zero. In that case τzrmust be
zero on the lateral surface. So, τrzmust also be zero along the periphery of the cross section, i.e., shear
stress cannot have radial component along the periphery of the cross-section in the cross-sectional

plane. However, if we look at Figure 11, the assumption of τyx being independent of the z coordinate
leads to a non-zero radial component which is a contradiction. Thus, we can conclude that for circular
cross-sections, considering τyx independentof z is not a good assumption. Still, this assumption is often
used since it gives an approximate distribution of shear stress.

3.3 I-beam cross-section (start time: 59:45)

Figure 12 shows the cross-section of an I-beam.
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Figure 12: The cross section of an I-beam

The centroid of this section would be at the center because of symmetry. So, the neutral axis passes

through the center. There are two different values of width possible in the cross section. To find τyxat a
distance y from the neutral axis, we can again use equation (13). As the width changes abruptly in this
case, the distribution of shear stresswill also exhibit a jumpcorresponding to this abrupt change in width

b. A plot of y vs. τyx is shown in Figure 13 exhibiting this jump.

Figure 13: Plot of y vs τyx for an I-section.
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This concludes our discussion onnon-uniformbending of beams. Till now,we have only looked at beams
having symmetrical cross-section. In the next lecture, we will learn how the analysis differs for beams

having asymmetrical cross-section.
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