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Solid Mechanics
Prof. Ajeet Kumar
Deptt. of Applied Mechanics
IIT, Delhi
Lecture - 24
Bending of beams (contd.)

Hello everyone! Welcome to Lecture 24! We will continue with our discussion on bending of beams. In
the previous lecture, we learnt about pure bending of beams in which bending moment was constant
along the beam. In this lecture, we will discuss non-uniform bending of beams.

Non-uniform Bending (start time: 00:43)
Introduction (start time: 00:58)

In case of pure bending, we had the same moment acting on every cross-section. For this reason, pure
bending is also called uniform bending. We will now move on to non-uniform bending of a beam where
bending moment is not uniform along the length of the beam. In the previous lecture, we had derived
the following relation for bendingmoment M and curvature k:

M = El k. (1)

If bending moment M is not constant along the length, bending curvature will also not be constant. We
now consider another case of loading where we can also have distributed load b(x) acting on the beam

as shown in Figure 1.
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Figure 1: A beam acted upon by a distributed load b(x)

The load b(x)is assumed to act in +y direction. Let us cut a small part of the beam of length Ax at a
distance x from the clamped end and (see the red region in Figure 1) and further draw its free body
diagram as shownin Figure 2.
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Figure 2: Free body diagram of a small part of the beam shown in red in Figure 1.

On this section, apart from distributed load, there will be bending moment as well as shear force acting
at the two ends. By convention, for the cross section having normal in +x direction, shear force acting in
+y direction is considered as positive while for the cross section having normal in —x direction, shear
force acting in —y direction is considered as positive. We denote this shear force by V. The center of the
left cross-section is marked as O and the position of a general point in the section of the beamis denoted
by £ which varies from x to x + Ax. Due to static equilibrium, the net moment on this part of the beam
must be zero about any point. In particular, let us do moment balance about O:

ZA_}/O:Q

z+Ax
= M(x+ Azx) e5 — M(x) e5 + Az V(x + Azx) e +/ (& —x)b(§)dE e3 =0 (2)

As everything is pointing in e3 direction, we can easily extract es component of the equation to get the
following scalar equation:

r+Ax
M(z+ Az) — M(z) + Az V(x + Az) + / (&—x)b(§)de =0 (3)

Since this equation holds for an arbitrary part of the beam having arbitrary length Ax, we can divide both
the sides by Ax and take the limit Ax - 0 to shrink the section to a single point, i.e.,

M(z+ Az) — M(z)+ Az V(z + Az) + [0 AT (6 p)b(€)deE
Az—0 Ax

= o tV@+mE-b€) =0 (rasAr 0,6 )

Or, — +V(z)=0. (4)

205



1.2

2.1

2.2

We have derived an important relation between the variation of bending moment and shear force. It
says that whenever moment varies along the beam, there has to be a non-zero shearforce acting on the
beam’s cross-section. The case of zero shear force corresponds to the case of pure bending where
moment is constant throughout the length of the beam as we saw in the last lecture.

Variation of ox in the cross-section (start time: 11:20)

For the case of non-uniform bending, the variation of o« can be taken to be the same as in the last
lecture. We just have to use local bending moment in the formula, i.e.,
—M(x)y

(7.171(~T7y3 3) = T (5)

In the above expression, y represents distance from the neutral axis as earlier.
Variation of tyxin the cross-sectional plane (start time: 12:07)

The shear components of traction in the cross sections are tyxand 1. As thereis an overall shear force
V(x) acting on the cross section in y direction, t,x must be non-zero. Let us now try to obtain its
distribution in the cross-section.

Assumption (start time: 13:40)

The stress component 1yxin a cross section can be a function of both y and z in general. However, we
make a simplifying assumption that it is only a function of y and not of z. This means that t,xwould be
the same at all points on lines parallel to z axis as shown in Figure 3 - different horizontal lines will have
different tyxthough.
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Figure 3: A typical cross section of the beam with variation of tyxshown such that it is a function of y
alone

Analysis (start time: 16:44)

To find the distribution of t,x, we cut a small cuboid element from the beam as shown in Figure 4 in
green.
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Figure 4: A cuboid elementcut from the beam.

A zoomed view of this green cuboid with all external loads acting on it is shown in Figure 5.
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Figure 5: Free body diagram of the cuboidal element cut from the beam shown in Figure 4.

The bottom surface (-y plane) of this elementis at a distance of y from the neutral plane where as its
left face ( —x plane) is at a distance x from the beam’s clamped end. Its free body diagram is shown in
Figure 5. The top face is the +y plane where the distributed load b(x) acts. The bottom face is the -y
plane and traction components 1y, 0,y and Ty act on it in —x, —y and -z directions, respectively. The +z
and -z faces (side faces) are part of the lateral surfaces of the original beam. As external forces are
assumedto be applied only on the +y plane of the beam, the +z and -z faces of the element are traction
free. On the +x face, we have bending stress ox that we have derived already. We also have tyxand tx
acting there. Similarly, ox, Tyxand txact on —x plane but in negative directions. In order to find tyx, we
justneedto balance the forces on this small cuboidal elementin x direction. Let’s first consider the force
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due to oxon the +x plane. We also introduce coordinates &, n and y for x, y and z variations from the
centroid of the cross-section of the beam at the clamped end. Thus, any general point on the cross
section of the beam has (y,z) coordinates as (n,y) as shown in Figure 4. The total force due to g on the
+x face of the small cuboidal element will be obtained by its integration over the area of this face. As

. . . . -b, b
evident from Figure 4, n varies from y to gand y varies from > to S 0N +X and -x faces of the element.

Thus, force due to ox on the +x and —x faces will be
b h

b h

2 (2 2 2
/_b / Ope(x 4+ Axyn,y) dndy — /_b / Ope(x,m,7y) dndry. (6)

J— y . 7 Jy

2 v
The +z and -z faces of the element being traction free and do not contribute to force in any direction.
The force on +y face has no component in x direction since the externaldistributed load acting there is
assumed to act along y direction. However, -y face has 1t acting on it which contributes to force in x

N . . . . -b, b
direction. The local coordinate £ varies from x to x + Ax while y varies from 7to; for y faces of the
element. Thus, the netforce due to Ty in x direction will be

g z+Az
/;l) / _T‘Ey(ft Y, "/)dfd’“) (7)
5 J

Summing all the forces in x direction to zero, we get

% % % z+Ax
/;I) / |:O'.17.'1? (IL' + AL7 1, f\/) - U.’z;n({L'., n, "/):| d/f)d“/ - /;I) / Ty (5. Yy, ’))dfd’}’ =0 (8)
oYY 5 YT

We can also substitute the following expression for ox

- —M(x)n (9)
L..(x)
in equation (8), which yields
b
—M.(x+Azx)n —M.(xz)n| 3 [TtAs e
]‘/:; plmml I.(z + Ax) - I.(z) dA —/_Tbjr -’sc'y( ,Y)dédy = 0. (10)

As the first integral is over x planes, M;and /;;act as constants. To make things simpler, we assume that
the beam’s cross section does not vary along its length. Thus, /;;does not vary along the length. Similarly,
we assumed initially that 1, does not vary with z or y coordinate. All these simplifications lead to

b
M. _\ — M, o :

B [ (i + t‘ ] f/ I}d{ _ / Tg‘y(‘g: y]t‘ﬂf /_25 d,-}.- =0. (11)
z plane z 2

2

As the above equations holds for cuboid element of any length Ax, we can shrink its length such that Ax
approaches zero. As always, we first divide the above equation by Ax and then take limit Ax—=> 0, i.e.,
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3.1

—[ lim M. (z + Az) ‘U’(”] if/ ndA —b lim J: (&, y)dE =0
A=l I z x plane Ar—0

Az Ax
d;f L // ndA —b 1, (r,y)=0
axr z plane
ndA —br,(x,y)=0 (using (4)) (12)
= plane

Notice the simplification in second integral. As Ax = 0, the range of the second integral shrinks to point
x itself. So, the integrand 1,y(&,y) becomes a constant, i.e., Tx(x,y) and comes out of the integral which is
then multiplied by the length of the integration interval Ax and furtherdivided by Ax. The integral in the
first term above is y-moment of x face of the cuboid element which is also shown as the shaded area in
Figure 7.
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Figure 7: The cross section of the beam with the shaded region representingthe area of the x face of
the small cuboidal element.

We denote this moment by Q(y): a function of y alone. As we change y, the shaded area changes and
thus the first moment of the shaded area also changes. Thus, the final expression for tx becomes

_ Vix10(v)
Iz b(y) (13)

Ty (X))

which is same as 1yx, the shear component in the cross-sectional plane. Here, we have allowed b, the
width of the cross section, to vary with y. This enables us to use this result for cross-sections of beams
such as l-beams. If we compare equations (5) and (13), we see that while bending stress ox is
proportional to moment, shear stress tyxis proportional to shear force.

Variation in t,xfor some representative cross-sections (start time: 43:40)

Rectangular cross-section (start time: 43:40)

A typical rectangular cross section is shownin Figure 8 and we want to find the value of tyxat a distance
of y from the neutral axis.
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Figure 8: A rectangular cross section for the calculation of tyx.

As tyxisindependent of z, it will have the same value over lines parallel to the z axis. For applying equation
(13), we need to find Q(y), b(y) and /... As this is a rectangular cross section, width b(y) is constant and
equal to b. We have already derived /;;for a rectangular cross section in one of the previous lectures to
be

1

= —bh? (14)

[ZZ
12

We only need to obtain expression for the first moment Q(y) of the area above y line where tyxis to be
calculated (shown as the shaded region in Figure 8). The first moment will simply be y coordinate of the

centroid of the shaded area multiplied by the shaded area. As the height of the shaded area is g- y, its
centroid will be at half of this distance from the y line and hence at

_ 1 h 1 h
Vet (2 =2y 15
y+35(5 -9 2<y+2> (15)
from the neutral axis. Thus, Q(y) becomes
_ 1 h h 1. [ h?
Qy) 2<y+2> (2 y) 5 <4 U) (16)
while t,xbecomes
Vi) 1[ h? )
r) -0 — — 1 ‘
. 2 4 d . Vv 6 1 Yy 2 (17)
Tya = 1. "o P\a T\
—bh3 b
12

. . . . 14
As Vis the total shearforce onthe cross section and bh is the area of the cross section, Eequals average
shear stress tavg While tyxat the neutral axis is

1 3
Tya:(y = 0) = Tavg X 6(4 - 0) = iTavg
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3.2

h
Likewise, at the periphery of the cross section (y = iﬁ) , Tyxis

1 1
Tya(Y = 0) = Tavg X 6(1 a Z) - (18)
The variation of y vs t,xis shown in Figure 9.
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Figure 9: Plot of y vs tyxfor a rectangular cross section

We observe that due to the presence of shear force in the cross section, shear stress is maximum at

centroid and vanishes at the two ends. There is another way to realise the vanishing of shear stress at

the ends. The points y = g , _Th also lie on top and bottom surfaces of the beam, respectively. There is no

external traction on the bottom surface whereas on the top surface, the distributed load b(x) acts in y

direction. Thus, Ty is zero at both top and bottom surfaces. However, due to ty and tyxbeing equal, shear
-h

. . h
stress on cross-sectional plane vanishes at y = > 5

Circular cross-section (start time: 54:30)

In the derivation for rectangular beams, we had assumed that ty«is independent of z coordinate. For a
circular beam however, this assumption cannot be used. Consider the beam shown in Figure 10 and
analyze one of its cross-sections.
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Figure 10: A radial distributed load applied on a circular beam

If Tyxis constant along lines parallel to z axis, the shear stress will be as shownin Figure 11.
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Figure 11: 14 on a cross section of a circular beam with the assumption that 1y is independent of z.

Basically, it is non-zero even at the ends. Let us work with cylindrical coordinate system and assume a
radial distributed load is acting (e.g., pressure load) which could also be zero. In that case t,r must be
zero on the lateral surface. So, 1, must also be zero along the periphery of the cross section, i.e., shear
stress cannot have radial component along the periphery of the cross-section in the cross-sectional
plane. However, if we look at Figure 11, the assumption of t,x being independent of the z coordinate
leads to a non-zero radial component which is a contradiction. Thus, we can conclude that for circular
cross-sections, considering tyxindependent of z is not a good assumption. Still, this assumption is often
usedsince it gives an approximate distribution of shear stress.

I-beam cross-section (start time: 59:45)

Figure 12 shows the cross-section of an I-beam.
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Figure 12: The cross section of an I-beam

The centroid of this section would be at the center because of symmetry. So, the neutral axis passes
through the center. There are two differentvalues of width possible in the cross section. To find Tyxat a
distance y from the neutral axis, we can again use equation (13). As the width changes abruptly in this

case, the distribution of shear stress will also exhibita jump corresponding to this abrupt change in width
b. A plot of y vs. tyxis shown in Figure 13 exhibiting this jump.
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Figure 13: Plot of y vs tyxfor an I-section.
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This concludes our discussion on non-uniform bending of beams. Till now, we have only looked at beams
having symmetrical cross-section. In the next lecture, we will learn how the analysis differs for beams
having asymmetrical cross-section.
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