
Chapter 28: Linear Transformations

Introduction
Linear transformations are a cornerstone of linear algebra, playing a critical role in 
the mathematical formulation and analysis of engineering problems. In civil 
engineering, they are used in structural analysis, finite element methods, and 
computer-aided design, among many other applications. A linear transformation 
provides a systematic way of mapping vectors from one vector space to another, 
preserving the operations of vector addition and scalar multiplication. This chapter 
explores the theory and properties of linear transformations, matrix 
representations, and their applications with a particular focus on geometrical 
intuition and problem-solving methods relevant to engineering contexts.

28.1 Definition of a Linear Transformation
A linear transformation (or linear map) is a function T :V →W , where V  and W  are 
vector spaces over the same field F, such that for all u , v∈V  and all scalars c∈F:

1.T (u+v )=T (u)+T (v )(Additivity)

2.T (cu)=cT (u)(Homogeneity)

These two properties ensure that linear transformations preserve the linear 
structure of vector spaces.

28.2 Examples of Linear Transformations
1. Identity Transformation:

T (x)=x ,∀ x∈Rn

2. Zero Transformation:

T (x)=0 ,∀ x∈ Rn

3. Scaling Transformation:



T (x)= λ x , λ∈R

4. Rotation in R2:

T ([ xy ])=[cosθ −sin θ
sin θ cosθ ] [ xy ]

5. Projection onto a Line or Plane

28.3 The Matrix of a Linear Transformation
If T :Rn→Rm is a linear transformation, then there exists a unique matrix A∈Rm×n 
such that:

T (x)=A x ,∀ x∈Rn

This matrix is called the standard matrix of the linear transformation. If the basis 
of the domain and codomain is standard, then:

A=[T (e1)T (e2)…T (en)]

where e i are the standard basis vectors of Rn.

28.4 Kernel and Image of a Linear Transformation
Kernel (Null Space):

The kernel of T , denoted by ker (T ), is the set of all vectors in V  that are mapped to 
the zero vector in W :

ker (T )={v∈V ∣T (v)=0}

It is a subspace of the domain V .

Image (Range):

The image or range of T , denoted by Im (T ), is the set of all vectors in W  that are 
images of vectors in V :

Im (T )={T (v )∣ v∈V }

It is a subspace of the codomain W .



28.5 Rank and Nullity
For a linear transformation T :Rn→Rm, the rank of T  is the dimension of its image, 
and the nullity is the dimension of its kernel.

The Rank-Nullity Theorem states:

dim (ker T )+dim (ImT )=dim (V )

Or in terms of matrices:

nullity (A)+rank (A)=n

This theorem is crucial for analyzing the solvability and behavior of linear systems.

28.6 Composition of Linear Transformations
If T 1:U→V  and T 2:V →W  are linear transformations, then their composition 
T 2∘T 1 :U→W  is defined by:

(T 2∘T1)(u)=T 2(T1(u))

Properties:

 The composition of two linear transformations is also a linear 
transformation.

 If T 1 and T 2 have matrix representations A and B, respectively, then:

[T2∘T 1]=B A

28.7 Invertible Linear Transformations
A linear transformation T :V →W  is invertible if there exists another linear 
transformation S :W→V  such that:

S∘T=IV , T ∘S=IW

In terms of matrices:



 If A∈Rn×n is the matrix of T , then T  is invertible iff det (A)≠0, and the inverse 
transformation is represented by A− 1.

28.8 Geometrical Interpretation of Linear Transformations
Linear transformations in R2 and R3 can be visualized as operations such as:

 Rotation
 Reflection
 Scaling
 Shearing
 Projection

These transformations can change the orientation, length, or position of vectors 
while preserving linearity. Civil engineers often encounter such operations in 
structural modeling, mechanics, and computer simulations.

28.9 Linear Transformations and Systems of Linear 
Equations
A system of linear equations can be viewed as a linear transformation:

A x=b⇒T (x )=b

 The solution exists iff b∈ Im(T )
 The solution is unique iff ker (T )={0 }

This perspective is fundamental in understanding the solvability and structure of 
linear systems in applied engineering contexts.

28.10 Applications in Civil Engineering
 Structural Analysis: Displacement and force transformations in trusses and 

frames.
 Finite Element Method (FEM): Transformation of stiffness matrices.
 Coordinate Transformations: Switching between local and global 

coordinate systems.



 CAD Modelling: Rotations, scaling, and projections used in designing 
components.

 Stress-Strain Relations: Linear mappings between stress and strain tensors 
in elasticity theory.

28.11 Change of Basis and Similarity of Matrices
Linear transformations can be represented differently depending on the basis 
used for the vector space. This concept is crucial in simplifying problems or 
interpreting data from different reference frames.

Change of Basis

Let T :V →V  be a linear transformation and suppose B={v1 ,…,vn} and 
B′={v ′1,…,v ′

n } are two different bases for V . Let P be the change of basis matrix 
from B to B′. Then:

¿

This transformation of matrix representations under different bases is called 
similarity.

Similarity of Matrices

Two matrices A and B are similar if there exists an invertible matrix P such that:

B=P− 1 A P

Similar matrices represent the same linear transformation under different bases. 
They have:

 The same determinant
 The same trace
 The same characteristic polynomial and eigenvalues

28.12 Eigenvalues and Eigenvectors of Linear 
Transformations
An important class of linear transformations are those that scale vectors instead of 
changing their direction.



Given a linear transformation T :V →V , a non-zero vector v∈V  is called an 
eigenvector of T  if:

T (v )=λ v

for some scalar λ∈F , which is called the eigenvalue corresponding to v.

Finding Eigenvalues and Eigenvectors

Let A be the matrix of the linear transformation T . The eigenvalues satisfy:

det (A− λI )=0

This is called the characteristic equation. Solving it gives the eigenvalues 
λ1 , λ2 ,…, λn. For each λ i, the eigenvectors are found by solving:

(A− λi I )x=0

Importance in Civil Engineering
 Modal Analysis: In structural dynamics, eigenvalues represent natural 

frequencies of vibration.
 Principal Directions: In stress analysis, eigenvectors correspond to 

principal stress directions.
 Stability Analysis: Eigenvalues indicate the stability of equilibrium in 

systems modeled by differential equations.

28.13 Diagonalization of Linear Transformations
A square matrix A∈Rn×n is diagonalizable if there exists an invertible matrix P and 
a diagonal matrix D such that:

A=PD P− 1

This is equivalent to saying that the linear transformation has n linearly 
independent eigenvectors.

Conditions for Diagonalizability
 Matrix A has n distinct eigenvalues  always diagonalizable.⇒

 If not all eigenvalues are distinct, check for linearly independent 
eigenvectors.



Geometrical Meaning

Diagonalization simplifies the transformation into scalings along specific 
directions (eigenvectors). For example, in a vibrating beam, diagonalization 
simplifies coupled motion equations into independent modes.

28.14 Linear Operators and Matrix Powers
A linear operator is a linear transformation T :V →V  on a single vector space. 
Matrix powers of linear operators are useful in recurrence relations, system 
modeling, and iterative methods.

Matrix Powers

If T (x)=A x, then repeatedly applying T  gives:

T k (x)=A k x

This is used in:

 Dynamic systems: Modeling population growth, material degradation, etc.
 Iterative Solvers: Successive approximations using power methods.

28.15 Linear Transformations and Differential Equations
In many physical systems, especially in civil engineering (e.g., vibrations of a 
bridge, thermal conduction in a beam), systems of differential equations arise, 
which can be written using linear transformations.

System of ODEs
d x
d t

=A x

Here, A is the matrix representing a linear transformation. The solution involves:

x (t)=eA t x (0)

Where e At is the matrix exponential, which may be computed via diagonalization 
or Jordan forms.



Practical Examples
 Heat conduction modeled using Fourier’s law (linear diffusion operator)
 Frame deflection using beam bending equations (linear elasticity)
 Modal vibration analysis (linear system with eigen-decomposition)

28.16 Transformations in Finite Element Methods (FEM)
In Finite Element Analysis (FEA), coordinate transformations are used 
extensively:

Local to Global Coordinate Transformations

To assemble the global stiffness matrix, each local element matrix must be 
transformed:

K (g l oba l)=TT K (l oc al )T

Where T  is the transformation matrix depending on element orientation.

Affine Transformations

Used to map:

 Reference elements (e.g., unit triangles) to physical elements in meshes.
 Jacobian matrices define these mappings, and their determinants indicate 

area or volume scaling.

28.17 Orthogonal Transformations
A transformation T  is orthogonal if its matrix A satisfies:

AT A=I⇒ A−1=AT

Orthogonal transformations preserve:

 Lengths: ∥T (x)∥=∥ x ∥
 Angles: ⟨ T ( x) ,T ( y )⟩=⟨ x , y ⟩

Examples:
 Rotations (no distortion, used in simulations)
 Reflections (used in symmetry analysis)



Relevance to Civil Engineering:
 Used in aligning axes in structural design
 Important in computer graphics for CAD software
 Ensure numerical stability in simulations (QR decomposition)
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