
Chapter 25: Unit Testing and Debugging (e.g., JUnit)

25.0 Introduction

In software development, ensuring code quality and reliability is critical, especially in large-scale
and mission-critical applications. Two foundational practices to achieve this are unit testing and

debugging.

• Unit Testing allows developers to test individual units/components of a program to

verify that each part functions correctly in isolation.

• Debugging is the process of identifying, analyzing, and fixing bugs or defects in

software.

This chapter introduces both concepts, with a strong emphasis on JUnit, the most popular unit
testing framework in the Java ecosystem.

25.1 What is Unit Testing?

Definition

Unit Testing is a software testing method where individual units or components of a software are
tested independently to ensure that each part functions as expected.

Key Characteristics

• Focuses on smallest testable parts of an application (methods or functions).

• Performed by developers during development.

• Automatable and repeatable.

• Supports Test-Driven Development (TDD).

25.2 Importance of Unit Testing

• Catches bugs early in the development cycle.

• Facilitates refactoring with confidence.

• Helps ensure code correctness.

• Supports agile and continuous integration (CI) practices.

• Documents expected behavior of code.

25.3 Unit Testing vs Other Types of Testing

Testing Type Scope Performed By Tools Example

Unit Testing Individual components Developers JUnit, NUnit

Integration Testing Group of components Testers TestNG, JUnit

System Testing Entire system QA Selenium, JMeter

Acceptance Testing Business validation End users Cucumber

25.4 Anatomy of a Unit Test

A unit test typically contains:

• Setup: Preparing the environment or test data.

• Execution: Running the method or unit under test.

• Assertion: Checking the result against the expected output.

• Teardown (optional): Cleaning up after the test.

25.5 Introduction to JUnit

What is JUnit?

JUnit is a widely used open-source framework for writing and running tests in Java. It is part of
the xUnit family of frameworks and supports annotations, assertions, and test runners.

Key Features

• Simple to use.

• Supports annotations like @Test, @BeforeEach, @AfterEach, etc.

• Integration with build tools like Maven and Gradle.

• Works well with IDEs and CI tools like Jenkins.

25.6 Setting Up JUnit

Step 1: Add Dependency

Maven

<dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>5.10.0</version>
 <scope>test</scope>
</dependency>

Gradle

testImplementation 'org.junit.jupiter:junit-jupiter:5.10.0'

Step 2: Configure IDE or Build Tool

Most modern IDEs like IntelliJ IDEA and Eclipse support JUnit out of the box.

25.7 Writing Your First Unit Test with JUnit 5
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

public class CalculatorTest {

 @Test
 public void testAddition() {
 Calculator calc = new Calculator();
 assertEquals(5, calc.add(2, 3), "2 + 3 should equal 5");
 }
}

Explanation

• @Test: Marks this method as a test method.

• assertEquals(expected, actual): Verifies the expected output.

25.8 Common JUnit Annotations

Annotation Description

@Test Marks a test method

@BeforeEach Runs before each test method

@AfterEach Runs after each test method

@BeforeAll Runs once before all tests (static method)

@AfterAll Runs once after all tests (static method)

@Disabled Skips a test method

25.9 JUnit Assertions

Assertion Method Description

assertEquals(expected, actual) Checks if values are equal

assertTrue(condition) Checks if condition is true

assertFalse(condition) Checks if condition is false

Assertion Method Description

assertNull(object) Checks if object is null

assertNotNull(object) Checks if object is not null

assertThrows() Checks if exception is thrown

25.10 Test-Driven Development (TDD)

Definition

TDD is a development approach where you write tests first, then write code to pass those tests.

Cycle

1. Red – Write a failing test.

2. Green – Write minimum code to pass the test.

3. Refactor – Improve the code while keeping the test green.

25.11 Parameterized Tests

JUnit allows testing a method with multiple sets of parameters.

@ParameterizedTest
@ValueSource(ints = {1, 2, 3})
void testEvenNumbers(int number) {
 assertTrue(number % 2 != 0);
}

25.12 Mocking in Unit Tests

Sometimes, components depend on external systems (DB, APIs). Mocking replaces those with
dummy implementations.

Mockito Example

@Mock
UserRepository userRepository;

@Test
void testFindUser() {
 when(userRepository.findById(1)).thenReturn(new User(1, "Alice"));
 assertEquals("Alice", userRepository.findById(1).getName());
}

25.13 Code Coverage

Definition

Code coverage measures the percentage of code executed by your tests.

Tools

• JaCoCo (Java Code Coverage)

• Cobertura

• SonarQube

Goal: Aim for high coverage but not 100% blindly. Some code like error logging may not need
to be tested.

25.14 Debugging: Concepts and Techniques

What is Debugging?

Debugging is the systematic process of detecting, analyzing, and fixing bugs or issues in
software.

Common Debugging Techniques

• Print statements (e.g., System.out.println)

• Logging frameworks (e.g., Log4j, SLF4J)

• IDE Debuggers (breakpoints, watches, stack trace analysis)

• Binary search to narrow down problem areas

• Rubber duck debugging (explain problem aloud)

25.15 Using IDE for Debugging (e.g., IntelliJ or Eclipse)

Basic Steps

1. Set breakpoints in code.

2. Run in debug mode.

3. Use step over, step into, step out features.

4. Watch variables and call stack.

5. Evaluate expressions during runtime.

25.16 Best Practices in Testing and Debugging

Testing Best Practices

• Write tests for both positive and negative cases.

• Keep test cases isolated and repeatable.

• Use meaningful test names.

• Keep tests in a separate test directory.

• Run tests in CI pipelines.

Debugging Best Practices

• Reproduce bugs consistently.

• Use version control to compare changes.

• Log important events and exceptions.

• Don't panic—be systematic.

25.17 Summary

In this chapter, we explored two vital pillars of software quality—unit testing and debugging.
We learned:

• The principles and benefits of unit testing, especially using JUnit.

• The structure of tests, common assertions, and annotations.

• The role of TDD and mocking in modern development.

• How to perform effective debugging using IDE tools and techniques.

• Best practices that improve both testing efficiency and debugging clarity.

These skills are fundamental to becoming a professional software engineer and are essential in
both academic and real-world software projects.

