
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of  Computer Science and Engineering,

Week 5 

Module - 01 

Lecture - 32 

Union-Find data structure 

So, when we look at algorithms and weighted graphs for shortest paths and for minimum 

cost spanning trees, we had to use some data structures in order to make the updates 

efficient. So, at that time we assume that these data structures were available and we 

went ahead to determine analysis of these algorithms. Now, let us go back and look at 

these data structures. So, we begin with the Union Find Data Structure which is used 

in Kruskal's algorithm for the minimum cost spanning tree. 

(Refer Slide Time: 00:28) 

So, recall how Kruskal's algorithm works. We arrange the edges in ascending order of the 

cost and we process the edges in this order. So, each edge we pick up. If it does not 

create a cycle, we add it to the tree and we observe that not creating a cycle is as same as 

keeping track of the components that we have so far, and checking that the end points 

line different components. So, the edge u v can be added if u and v currently are not 

connected. They are not in the same component. Now, as the result of adding the edge, 

the two components do get connected. So, we have to merge those two components. So, 

354



the bottle neck in implementing Kruskal's algorithm efficiently is to keep track of this 

collection of components in order to check which component a vertex belongs to, and to 

merge two components whenever we add an edge connecting them. 

(Refer Slide Time: 01:22) 

 

So, formally the problem that we have claimed to solve is to maintain a partition of a set 

and update this partition, right. So, by partition we mean that we have a set s and it is 

broken up into some disjoint subsets. So, these subsets do not overlap, right and every 

element belongs to none of these things. So, there may be some which have more than 

one element and each element is assigned to exactly one partition, right and we call these 

partitions also components. So, in Kruskal's algorithm and other applications, very often 

we start with a partition in which every element is on, it is over. So, we never have 

maybe two elements in a partition. 

So, we will call this setting up as data structures. So, we will call it union find because 

the two operations we actually support on this data structure are called find. So, this is a 

query operation. It is as given an element s, right. Let me know which component it 

belongs to currently. So, this is an update which it does not update the data structure. It 

just queries the data structure and tells us in which of these partitions does s currently 

live, and then we have an update which allows us to take two partitions, right. So, may 

355



we take these two partitions and say now combine them into single partition. So, we call 

this union, right. So, there is a union operation which merges partitions together and 

there is a find operation which has to keep track of which partition is said belongs to an 

element belongs to over time with partition. It originally would have got merged with 

other partitions because of these two operations union and find. We call this a union find 

data structure which supports these two operations efficiently, and the initialization of 

this union find is an operation which takes a set and breaks up to it. It has n elements up 

into n components each containing one element.  

(Refer Slide Time: 03:09) 

 

So, the first issue that we have to deal with is about the names of the components. What 

do we call these components? It is a simple solution. We will find to just use the 

elements of the set itself as names, right. So, it does not really matter of what names we 

give. We just need to be able to check periodically whether s and t or u and v belong to 

the same component. So, we just need to know whether find of u is equal to find of v, 

right. So, the exact choice of how we label find of u and find of v does not matter. So, as 

long as we can check whether two labels are the same or differ, but rather than 

manufacturer set of labels out of them have, we will actually choose the labels to set 

elements themselves. So, initially we said every element lies in a single partition. So, 

supposing I have a set consisting of s t u, then I would initially have three partitions. One 

356



contains s, one containing t, and one containing u. 

You have the question is what do we call this partition. Well, we just call them the same 

thing. We call this partition s, call this the partition t and call this the partition u. So, 

sometimes the names of the element will refer to names of partitions. Sometimes they 

will refer to names of the elements themselves. Now, what happens when we merge? For 

example, supposing we merge these two partitions, right. Then, the label has to be the 

same. So, the element does not change, but maybe we might take the set, the label u and 

make it t. So, now, both element u and element t belong to the partition label t, right. So, 

we just use as the set of labels, the names of the elements themselves. 

(Refer Slide Time: 04:44) 

 

So, in particular if you are dealing with graphs, the elements are the vertices to (( )) and 

we already had convention that we have n vertices in our set and we call them 1 to n. So, 

set of elements is 1 to n and sources are set of components, right. So, what we will do 

now is the easiest way to keep track of this is to setup an array, right. So, we have an 

array which we will component and what will this array say. Well, this will say that for 

each of the vertices are nodes to end which component it belongs to, right. So, initially 

we said each component will contain exactly one vertex. So, we can just have a vertex n 

a vertex I and component I for every in general after some time, these might change. 

357



So, this might have gone to component 3 is might have gone to component 7 and so on, 

right. So, over time the component that more belongs to changes because of the union 

operations, so then when we find you, just return the current value of component and for 

union all we have to do is, we have to check and make all the components, both 

components k and k prime have the same label. So, rather than invent a new label, we 

will choose either k or k prime. In this case we choose k prime. So, what we will do is, 

we will go through and wherever we see a k, we will replace by a k prime. So, we will 

systematically replace every entry of the form k in this array to k prime. So, after this all 

component values we choose to be k or now k prime, all virtual k prime and remain k 

prime. So, effectively the two components have been merged. So, this is a very simple 

implementation of union find. So, let us try and understand why this is not a very good 

implementation from a complexity point of view.  

(Refer Slide Time: 06:35) 

 

So, clearly in order to make the initial things, we have to scan the array once, and then 

we just have to initialize component of I to be the value I. So, this takes order n time. So, 

this is find. Similarly, finding an element is efficient. We just have to look up the ith 

element in the array and remember that in an array accessing any element takes constant 

time. So, this is an efficient operation. It takes constant time. On the other hand, union is 

a problem because the way we have described union, we have to go through every node, 

358



check if its component is k and if its component is k, if component of device k, we have 

to update it k prime, right. So, regardless of what the components k and k prime currently 

look like, we will have to scan all the elements and update those which are k to k prime. 

So, this will take order n time for just one union operation which is independent of the 

size of k and k prime as current partition sets. 

So, if we do a sequence of m such operations, then this will be order m times n, right and 

if it is n such operations, it will be n square, right. So, a sequence m operation, each of 

them will take order n time and we would like to improve on this. So, basically we want 

to see we can improve on the speed of the union operation. 

(Refer Slide Time: 07:54) 

 

So, let us make a slightly more elaborate representation. So, we keep this array 

component as before which tells us for each vertex I which component it belongs to, and 

the components as before are initially labeled 1 to n. The names are drawn from the same 

set. So, basically 1 to n has the vertices 1 to n or also names are components, and initially 

the component of I is the vertex. I is an component time. Now, we have a separate array 

of list, right. So, for each component, there will be currently we keep a list. So, initially 

the list is that the component 1 consist of the vertex 1 component, 2 consist of the vertex 

2 and so on, but over a period of time we could have situation whether the component 4 

359



consist of vertex 1, 2, 4 and 7, right. So, for each component we have the list of vertices 

that it belongs to and we will also separately keep track of the size. So, we will say that 

the size of this component is also 4 and the size of this component is 1. So, we have two 

auxiliary things. We keep for each component k the list of its members explicitly and we 

also keep the size of this list. So, we know exactly how big each component is at any 

given time initially, of course the size is 1. 

(Refer Slide Time: 09:10) 

 

So, when we need do make union find, we said component I equal to I as before, then we 

initialize that the members of the list I are component I adjust the list containing I itself 

in the size of each component is 1. Now, find is exactly the same as before. We just have 

to look at component and return the value. The component I points two unions is also 

similar to before. So, what we need do is, we need do set everything that is pointing to k 

to point to k prime inside. So, every entry in component which k should be, k prime, but 

now we can do this by just looking at members. So, we do not have to scan all the 

elements 1 to n. We can look up every element that appears in members of k and update 

its value to k prime, right. So, this is one saving. We no longer have to go through 1 to n. 

We have only looked exactly at the member which belongs to the set k. Then, of course 

we need to update these new things. 

360



So, members of k now become members of k primes. So, we will merge these two lists. 

Now, remember that these two lists are in sorted order. We can assume that they are 

always kept in ascending order of the names of the elements. So, merging two sorted lists 

as we did in merge sort, takes time proportional to the length of the final list. So, this will 

be a linear time thing in proportional to the size of the components k and k prime. 

Finally, now we have one new component which subsumes earlier to. So, its size is 

exactly the sum of the previous two of course. These are partitions. No element was 

repeated. So, every element that joins the partition is a new one. So, size of k prime is 

exactly size of k plus the old size of k prime. 

(Refer Slide Time: 10:47) 

 

So, why do we get some benefit from this? So, the first thing as we said is updating a 

component is now proportional to its size, right. Up going updating component takes 

orders size of k is kept. It does not take order n steps. We do not have to go through 

every vertex 1 to n. We can explicitly look up those elements mentioned in members of k 

and only update those values, but size of k actually places in much more important role. 

What we can do now is we can determine whether to re-label k is k prime or k prime is k. 

Remember we have a choice when we merge k and k prime. All the elements are going 

to become part in the same component. So, the new component will be either call k or it 

will be call k prime. 

361



So, which one we should choose? So, this strategy that we are going to do is to keep the 

name of the larger, right. So, the size of k is smaller than the size of k prime. That means, 

k prime currently has more members in k. Then, we will keep k prime as a name of the 

final set. So, we will replace all cases k prime and symmetrically size of k is bigger than 

size of k prime. We will replace all the k primes as k, right. So, the smaller set changes 

its name and the bigger set keeps its name. 

(Refer Slide Time: 11:58) 

 

So, this does not give us any benefit in the worst case of an individual union operation. 

Suppose we have size of k and size of k prime roughly the size of half. So, if we are 

built-up two components which are roughly half the size of the overall set, then whether 

we merge k or k prime into the other set, we have to update about half the values. So, this 

is r order n operation, right. So, earlier we have said that without doing anything fancy, 

we will scan all the vertices and worst case in fact is every case of update will take as 

order n time. Now, it says that there is a worst case where we cannot avoid taking order n 

time. So, n by 2 is order n. So, therefore what we gain? So, what we have gained cannot 

be really accounted for terms of individual merge operations. We have to look at the 

humility effect of punch of merges. So, we need to do what is more careful accounting. 

Now, we have to account for the operations. So, remember we did some careful 

accounting when we did things like you know when we used adjacent list in breadth first 

362



search. We said across all the loops, we will see each edge exactly twice. Therefore, 

across all the loops we take order n time. So, we need to do a similar kind of careful 

accounting across, not one merge, but all the merges that they take x. 

(Refer Slide Time: 13:17)  

 

So, the effect of merging the smaller set into the bigger set is that if I look at in 

individual element, the component if it changes, it is labeled, right. If the component is 

currently k and it becomes k prime, then new set is at least twice is because of the votes, 

right. So, supposing I had set k and an element is in it and I had another set k prime, then 

I decide to merge these into two single set. Now, by assumption if the new set continues 

to be called k prime, then that means that k worse less than k prime or you could even 

say less than equal to does not really matter. So, since case smaller than k prime, what it 

means is that if I look at k plus k which will be double the size of the old set, this will be 

less than or equal to k plus k prime thus by substituting. Therefore, this is the size of the 

new set, right. K plus k prime is the size of the new set I construct and it is going to be at 

least twice the size of the old size. Therefore, whenever the name of the set labeling 

component of an element changes, the new set belongs to at least double the size. 

So, now let us look at some sequence of m union operations starting from the initial 

condition when I have all elements in separate partitions. So, what can happen in each 

363



operation, perhaps I combine two elements, right. Now, if the next time if I combine 

these two, then totally in two operations I only affect three elements. So, in the worst 

case if I start doing this separately, each time in one operation I accept it affects and in 

other operations it affects more and so on. So, after a sequence of m operations at most 2 

m elements have had the status change from the initial condition, when they have a 

pointing two or component consisting only themselves. So, that means, only 2 m 

elements have ever been affected by my union operations. That means as component 

cannot have got larger than 2m, because in order to get into a component, something 

must change. Only 2 m elements are allowed to have any changes apply to them at all, 

right. 

So, the size of any component after m union operation at most 2 m, but how does a size 

grow? It goes 1, 2, 4 because it keeps doubling up to m, right. So, after log m steps if I 

double 1 log m times, I will get m. So, therefore, a component s can be relabeled a fixed, 

sorry a fixed element s can be relabeled at most log m times. So, because we have this 

doubling the number of times that is set can be an element can move it to a new set. It is 

restricted because each time it moves the site size of its component doubles, and there is 

a limit on the largest component it will belong. 

(Refer Slide Time: 16:22) 

 

364



So, therefore, if we look at some total of m union operations, we know that 2 m. So, 

order m elements have had the component updated and each has been updated at most 

log m times, right. Remember now that when we are updating elements, we do not touch 

any element which is not updated. It is not the old setup, where we have to scan all the 

nodes 1 to n in order to decide which one is not because we have the list members. When 

we want to update the component k, we exactly update only those components. So, we 

only touch the components we change. So, m elements changes log m times. So, totally 

we have m log m steps of change, right. So, if we do m union operations, we take m. It is 

not that each one takes m log m time directly, but the cumulative total of m union 

operations is only m log m, right. 

So, this we can average out in a way you say that therefore, since where m operations in 

the total is m log m, even though some small some more big on an average, they take log 

m operations. So, this is a different kind of analysis. It is not quite the analysis we did 

for. For example the adjuration seal is in b of s, where we just added of everything across 

whole thing. Here also we are adding, but we are also kind of pointing backwards and 

saying now there are totally so many operations and the total time taken across all these 

operations so much. We divide and we give each share of the total cost. So, though it is 

not the case that in every single operation takes log m time, we can kind of believe that 

this gives a. So, log m implementation of the union operation. So, this kind of analysis is 

called amortized complexity. 

So, this is the term which actually comes from accounting from financial things, where 

you have certain cost which for example you might have in order to run a business. You 

might have to setup something, right. You may setup an office, and then all that now if 

you cannot say that my cost in give one was a lot, because I have to do a lot of work to 

setup the office. Therefore, day one with expansive what you have to do is look at the 

total life time of your operation and say this course is divided across the entire things. 

So, is it work, right that is called amortization, where you kind of take some fixed cost of 

f, fixed piece of equipment are said or worked and divided across the entire life span 

when it is going to be used. So, in the same way here we are kind of doing amortized 

analysis. We are counting across all the m union operations how much time we take, and 

then working out that each one takes roughly log n time. 

365



(Refer Slide Time: 18:49) 

 

So, how do we use this union find data structure and Kruskal's algorithm? Remember 

Kruskal's algorithm be initially sort the edges. So, we have u and to e m and ascending 

order of cost. Now, we begin with trivial partitions. So, we do make union find of our set 

of vertices. So, each vertex j is label j. So, we have exactly n partition. One containing 

each vertex and now we need to add the current edge we are looking at, provided it does 

not create a cycle. This is the same as saying that send point was being different 

components. This is the same as saying that if I do find of u and find of v for an edge u v, 

right, find of u is not equal to find of v and if find of u is not equal to find of v, then I 

need to do a merge. So, I need the union of these two components. I can get their 

component names by using find u and find v. So, this will be some k in general the uth 

component containing u. This will be k prime th component containing v and I do a 

union of course, and I got in new component which contains both u and v. 

366



(Refer Slide Time: 19:57) 

 

So, since that tree has only n minus 1 edge, we will only add n minus 1 edge out of the 

total set to find the spanning tree. So, therefore, we have order n union operations to 

come over all and v k. Now, therefore, for any m operations we said into will take m log 

m. So, for m operations we have an overall amortize cos if n log n, right, so maintaining 

the partitions and adding them in all that takes m n log n. Now, initially we have to sort 

the edges. So, that takes m log m, but as we discussed when we actually look at Kruskal 

in detail, since m is at most n square, we know that log m is 2 log n at most. So, at the 

level of orders of magnitude log m and log n at the same, so we can look at m log n m as 

same as m log n. So, the total cost now comes out to m log m, sorry m m log n plus n log 

n. So, we get m plus n log n. 

If you remember the complexity that we claimed for Prim's algorithm and also, actually 

for these algorithms which are similar to prim's in structure using heaps, we claim that 

those who are both of that type m plus n, if we use the heap to do the minimum distance 

calculation. So, therefore, Kruskal's algorithm with the union find data structure 

essentially has the same complexity as prim's algorithm using heaps. 

367



(Refer Slide Time: 21:28) 

 

So, to summarize what we have seen is that we can implement Union-Find using array to 

components and array of list to name the vertices in each components, and another array 

to keep track of the size of each component. With this the initialization step of making 

the union find data structure of disjoint individual element partitions is order n find takes 

constant time. Amortize complexity for a sequence of m operations is m log n. So, we 

can think of each union operation is taking log m time for a sequence of search m 

operations starting from the initial. 

368


	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56



