
Design and Analysis of Algorithms, Chennai Mathematical Institute

Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 01

Module - 01

Lecture - 01

(Refer Slide Time: 00:06)

So, welcome to the NPTEL MOOC on the design and the analysis of algorithms. So,

here are some of the things that we would be looking at in this course. When we study

algorithms, the first thing that we need to convince our selves is that the algorithm is

correct and it is doing the job that we expected. So, we look at the strategies for proving

the correctness of algorithms.

The other important aspect of algorithm is of course its efficiency. How much time does

the algorithms take on inputs? Now, of course we have to factor in the size of the input.

And we need a notation are a way of comparing two different algorithms, which operates

on the same types of inputs and produce the same type of outputs. So, this will be

achieved through the concept called asymptotic complexity, which measures the running

time of an algorithm as inputs grow larger and larger as the function of the inputs. And

we will develop some notation, typically the big O notation in order to smoothen out

some ((Refer Time: 01:00)) of algorithms and group them into large chunks, which are

equivalent.

4

An important part of problem solving in any domain and in particular algorithms is the

art of modelling the problem at a suitable level of detail. In most algorithms that we will

see we need to find a suitable mathematical model. One of these will be graphs. We need

a way of representing the concepts of these models in our algorithm. For this, we need

appropriate data structures. And of course typically in order to solve a problem we need

to break it down into manageable sub problems.

So, we will look at strategies to decompose problems into smaller problems and see how

to put them together to solve the problem it has. Over the course of time, many generic

techniques have been developed to solve the large number of problems. And we will see

examples of how these techniques can be applied to very standard problems that we

come across repeatedly. Among the techniques are divide and conquer. Where, we break

up the problem into individual components which do not overlap with each other and

then combine these solutions in order to get the solution for the overall problems.

In some cases, we can identify a strategy which looks at the local state of the problem

and chooses an optimal path and arrives at the final solution without having to look at all

possibilities. These kind of greedy algorithms are there. It is important to know how to

prove such an algorithms correct. But if a greedy algorithms does exists, it is typically

much more efficient than other types of algorithms. When greedy does not work, we

need a systematic way of exploring all the possibilities and choosing the best one. In this

process, sometimes we have to discard overlapping problems and make sure that we do

not waste fully recomputed things. So, this is covered by the concept of dynamic

programming.

5

(Refer Slide Time: 03:06)

Now along with the theory, in this course we will have some programming assignments.

So, we do expect that all of you have some background in programming. This could be in

C or C plus plus or java. We are flexible about the language we use, but you should be

able to standard programs and implement some of the basic algorithms that we are using

in our course. In order to do this, we will of course cover some new data structures in

this course. But we do expect that in the language that you use, you are familiar with

basic concepts like arrays and lists and also things like stacks and queues, which build up

on these. Of course, when we come to stacks and queues we will try to give some detail

about how they are used. But we do expect that you have seen them before. So, this not

the first time you are seeing these concepts.

6

(Refer Slide Time: 03:54)

Here is a kind of approximate list of the topics we expect to cover in the course. So, after

looking at a few examples we will start with asymptotic complexity, which is the way of

measuring the efficiency of algorithms and writing down this measure in a way that we

can compare easily across algorithms. We will then move to the most basic problem that

we have for arrays, which is to search an array for an element. And in the process we will

realize that it is important to be able to sort the array efficiently in order to arrange the

elements in a way where we can search in an effective manner.

So, we will look at searching and sorting. So, we will look at binary search and we will

look at different notions of sorting. Some of which are more elementary and intuitive like

insertion sort and selection sort. But I am not the best in terms the efficiency. And then

we will look at more efficient algorithms like merge sort, quick sort; which are not

obvious to begin with.

 Moving on from searching and sorting, we come to graphs and graph algorithms. So, we

will introduce graphs. We will see how we can use them to model certain types of

problems. We need to know how to represent a graph. How do you? Graph is essentially

a picture, so how do you translate this picture into something that an algorithm can

manipulate? So, that is representation. We will look at standard problems in graphs;

reachability and connectedness. We will look at a special class of graphs called directed

acyclic graphs, which are very useful for modelling certain kinds of problems. And then

7

we will look at other canonical problems on graphs including shortest paths and spanning

trees.

(Refer Slide Time: 05:31)

As we mentioned before, there are some basic algorithmic design techniques; which are

applied across a class of problems. So, we will look in particular divide and conquer,

greedy algorithms and dynamic programming. Among the data structures that we will

encounter in this course are priority queues, which are often implemented to heaps. You

will look at binary search trees, which are efficient ways of maintaining information in a

sorted order dynamically as information comes and goes. And we will look at a very

useful data structures to maintain a partition of the set into a disjoint collection of

subsets; the so called union-find algorithm. And finally, depending on how much time is

left we will look at some miscellaneous topics. It is important to realize that not every

algorithm admits an efficient solution.

8

(Refer Slide Time: 06:34)

So, we will look at problem are intractability and some provably hard problems and

some other problems of which this state is unknown. This is an eight week course. The

tentative schedule is as follows: in the first week, we will do some motivating examples

and we will look at some notations and work out some problems involving asymptotic

complexity. In the second week, we will move on to searching and sorting. In the third

week, we will introduce graphs and look at basic graph algorithms. We will continue

with more graph algorithms. And then in the process, introduce the disjoint set data

structures. We will then formally look at divide and conquer, which you have already

seen along the way. But we will look at it again. And then we will introduce heaps. In the

sixth week, we will do search trees and some examples of greedy algorithms and their

proofs. In the seventh week, we will be devoted to dynamic programming. And then the

last week we will cover miscellaneous topics.

Now, you should remember that this is only an approximate schedule and there will be

some variations. But roughly this is the sequence and the speed at which you planned to

cover the material in the course. You can also see alongside the weeks. The calendar

weeks that these correspond to. So, to the first week of the course is the current week

which is January fifth to ninth. And this course will go on to the last week of February.

9

(Refer Slide Time: 07:53)

Now as part of the evaluation for the course, there will be continuous evaluations. Every

week, there will be quizzes. You will also be programming assignments; roughly six

programming assignments across the eight weeks. After the course ends, there will be a

certification exam. In order to get a certificate that you successfully completed this

course, you need to score 60 percent in the quizzes and in the certification exam. You

need to submit at least five of six; out of the six assignments. And at least, four of them

you must do something ((Refer Time: 08:27)) review.

(Refer Slide Time: 08:30)

10

We will be following two main text books. Although, I will not use the text books

directly in the course, but if you want to look at some materials you will find them in

these two books. The first book is called “Algorithm design” by Jon Kleinberg and Eva

Tardos. And the second book is just called “Algorithms” by Sanjay Dasgupta, Christos

Papadimitriou and Umesh Vazirani. The book by Kleinberg and tardos is more detail and

it has a number of really nice examples to illustrate many of the concepts and quite detail

proofs. The book by Dasgupta Papadimitriou and Vazirani is a slimmer book. It is more

easy and accessible to read on your own. But on the other hand it does leave a lot of

details as exercises. So, in order to really understand the material, you really need to

spend more time working out the exercises and not just go by the materials that present

in the chapters.

11

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

