Solid Mechanics
Prof. Ajeet Kumar
Deptt. of Applied Mechanics
IIT, Delhi
Lecture - 26
Concept of Shear Center

Hello everyone! Welcome to Lecture 26! In this lecture, we will discuss about a very interesting concept:
the concept of shear center.

1 Definition (start time: 00:34)

The shear center is defined as the point in the cross-sectional plane relative to which the net torque due
to shear stress distribution (originating because of transverse load only) vanishes. Finding analytical
formula for the location of the shear center for a general cross-section isn’t possible. However, the same
can be derived for thin and open cross-sections such as the one in Figure 1. We show this derivation now.
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Figure 1: A typical thin and open cross-section.
2 Analysis (start time: 04:46)

We had derived the following formula for shear stress tsxat arc-length s:

1

to(12, — I,,1..) V@l = Q:elye) + Va(@ i — QL)) (1)
which is assumed to be uniformly distributed through the cross-section’s thickness. Let us denote by s.=
(4,,4;), the location of the shear center as shown in Figure 1. The centroid of the cross-section is located
at 0. As the net torque T about scvanishes as per definition, we can first find the total moment about s,
and then equate its x-component to zero. Let us denote the cross-sectional area by Q and an arbitrary
point in the cross-section by P. The position vector of P with respect to shear center (7p/sc) can be written
as follows:

Tsx = —

227



@/s( - 7.—>P/() + Q))/s(
.
—(Ayjt+Azk) (2)

The total torque T due to shear stress distribution will thus be

T/s( = M/s(, : ; = // (7—)13/5( X Tatsg') Z dA
J JQ

— // (TP /0 X Tus8) -1 dA — // [(Ay_)+A;ﬁ:) X Tps8| -4 dA.
JJa JJa (3)

In the second integral term, the shear center position (A,] + A.k) can be taken out of the integral while
the integral of shear stress over the cross-section gives the total shear force V in the cross-section. For

the first integral, let us write area dA as dsdt and change the area integral into two line integrals: one
along the arc-length s and the other along the thickness t. Thus, the above equation can be rewritten as

Ty = / / (720 X Tosd) -1 dsdt — [(ij +ALK) x / / Toud dA] Ry
JsJt J JQ

— / [/ﬁ’)/O(S,f)dt} X Tps(2,8)S ds - [(Ay} + A:ﬁ') % (Vyj n V;AA?) ¥

Js Ji

= / [ /r_)l’/()<5: l‘)df} X 7-_L's(i17¢ S)S ds| - z - |:A!/VZ - A;Vl/} :
Js =Jt
_ | (@

The expression [i Eﬁ,—o(s, t)dt gives us the first moment which we can replace by the position vector of
point P°times the thickness of the cross-section at arc-length s, i.e., tsand P° denotes the centroidal point
at arc-length s. These centroidal points form the centerline of the cross-section shown as the dashed
green line in Figure 1. Thus, we get

er
T.. = ] to(TP5 j0(5) X Teed) - 1ds — [A, V2 — AV,]
s=0

(5)

Here, L. denotes the full arc-length along the cross-section boundary and should not be confused with
the length of the beam. Upon working out the above integral, we get

Tisc=GVy+ GV, - [Asz - Asz] (6)

where C,and C; are the constants obtained through the integration over the cross-section’s arclength.
As, the torque about the shear center must be zero, we get the following upon rearranging:

(Cy+ Az)Vy+ (Cz_ Ay)Vz= 0 (7)
As this holds for arbitrary V, and V,, we finally obtain
Ay= Cz, Azz _Cy. (8)

We can find Cyand C; by substituting equation (1) for 1« in equation (5). Let us consider the case when
only V, acts on the cross-section and (y, z) axes are also the principal axes. So, /,; becomes zero and
formula (1) for tsx simplifies to
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Plugging this expression in equation (5), we get:
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s=0 =0 I:’:ts
-1 .
v, {I / R0 X Q53 ds} ‘3.
“ (10)
Thus, we get z-coordinate of the shear center to be
1 .
A, =—-C, = / 0 X Q38) -1 ds.
YL, (7o > @33) (11)
Proceeding along similar lines, y-coordinate of the shear center turns out to be
1 R
Ay=C,=—— (7?%/0 X Qis) -1 ds.
Ly Js (12)

Note that the above formulas hold only if y and z axes are also the principal axes of the cross-section.
3 Bending-twisting coupling in unsymmetrical cross-sections (start time: 22:35)

We now illustrate that a beam can also twist when subjected to transverse load if the line of action of
transverse load does not pass through shear center. We show such a beam in Figure 2 which is clamped
at one end and a point load is applied in the transverse direction at the other end at point A.

! —

Figure 2: A beam with unsymmetrical cross-section is subjected to a transverse point load

The line joining the shear center of different cross-sections is also shown there. Let us isolate the beam
from the clamped end support and include the reaction of shear stress distribution from this support in
the left end cross-section in the beam’s free body diagram. The net moment on the beam would have to
be zero about any general axis in static equilibrium. Consider this axis to be the line of shear centers for
which the moment about it would be torque since this axis is perpendicular to the beam’s cross-section.
The torque due to shear stress distribution in the left cross-section about the shear center of the left end
cross-section will be zero by the definition of shear center. However, the torque due to the applied
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transverse load about the axis of shear center will be non-zero since the load is acting eccentrically to
the shear center axis. Thus, a net torque acts on the beam which will also induce twist in the beam in
addition to the usual bending due to transverse load. This twist will lead to additional reaction of shear
stress distribution from the support on the left end cross-section so that the overall torque on the entire
beam finally vanishes. Needless to say if we apply the transverse load such that its line of action passes
through the shear center at the right end cross-section, there will be no tendency in the beam to twist
and the beam will undergo just bending.

4 Shear center for symmetrical cross-sections (start time: 32:10)

It can be shown using formulae (11) and (12) for the shear center that it always lies on the line of
symmetry of the cross-section (if any present). For example, consider several symmetrical cross-sections
in Figure 3.
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Figure 3: (a) annular cross-section having infinite lines of symmetry (b) heart-shaped cross-section
having one line of symmetry (c) Flower shaped cross-section having four lines of symmetry

In Figure (3a), we have an annular cross-section for which all diametrical lines are lines of symmetry.
Accordingly, shear center and its centroid coincide. In Figure (3b), we have a heart-shaped cross-section
which has just one line of symmetry as shown in the figure. Accordingly, the shear center lies on this line.
To fix the other coordinate of shear center, one would have to use the formula derived above. Finally, in
Figure (3c), we have a flower-shaped cross-section having four-fold symmetry. As the shear center must
lie on all lines of symmetry, it gets uniquely specified here too just by inspection.

4.1 Shear center for an L-shaped cross-section

Consider the thin L-shaped cross-section shown in Figure 4.
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Figure 4: A thin L-shaped cross-section with its shear center and shear stress distribution shown (a)
cross-section having one line of symmetry (b) cross-section having no line of symmetry

For the cross-section in Figure (4a), it again has one line of symmetry as shown in the figure. As the cross-
section is thin and open, the shear stress flows from one end to the other in the cross-section. By
inspection, one can also see that torque due to shear stress distribution vanishes about its corner point:
the line of action of shear stress at every point in the cross-section passes through the corner point.
Accordingly, the corner point is the shear center which also happens to lie on the line of symmetry. In
contrast, for Figure (4b), the two legs of the cross-section are not of same length. Hence, it has no line
of symmetry. The corner point is again the shear center since the torque due to shear stress vanishes for
the same reason as earlier.

5 Shear center for a cut annulus (start time: 38:14)

Let us think of a thin cross-section which has the shape of an annulus but it is cut as shown in Figure 5a.
For such a cross-section, we have only one line of symmetry due to the presence of cut. Thus, the shear
center lies on this line of symmetry but its position does not get completely known. As the cross section
is thin and open, shear stress flows from one end to the other. If we find torque about any point in the
green region (see Figure 5a), the torque due to all the shear stresses contribute in the same direction
and hence does not vanish. Thus, the shear center must lie outside this green region. Let us try to find
the exact location of the shear center.
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Figure 5: (a) A cross-section of the shape of a cut annulus has one line of symmetry as shown: flow of
shear stress is also shown (b) the relevant dimension and variables for the analysis of the cross-section
shown

Suppose that the mean radius of the annulus is R and the thickness is t. As the shear center has to lie on
the line of symmetry, A, = 0. Notice that even though there is an infinitesimal cut in the cross-section,
any pair of perpendicular lines will still form the cross-section’s principal axes, in particular, the (y - z)
axis also form principal axes. We can thus use formula (11) to obtain A, which can be alternatively written
in terms of # coordinate to denote arc-length as follows:
1 27 ) . R2 2w )
A, = / Reé, x Q) ég)-i RdO = / Q; db

L. Jo ( Y ) L. Jo Y (13)
We need to know find Qz for the region [0,d] (see Figure 5b) which has also been drawn separately in
Figure 6.

Figure 6: The part of the cross-section from 0 up to 8

Let us identify a tiny strip shown in red in Figure 6 which subtends an angle d¢ at the center. The y-
coordinate of the centroid of this tiny strip is Rsing and its area is tRde. Thus, for this tiny strip, we can
write:
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dQy, =Y dA= R%tsing do (14)

We can now find Qz by integrating over such tiny strips, i.e.

0 0
QZ = / dQ, = th/ sin o dp = R*t(1 — cosf)
' 0 0 (15)
Let us now find /,; for the cross-section about its centroid O. As the cut is really thin, the annulus is
approximately complete. So, to calculate /x, lyyand I, we can forget about the thin cut. We thus have

/zz: Iyy: 1/2 I)()(: 1/2R2 (ZITR t) = ITR3 t. (16)
Finally substituting equations (15) and (16) into equation (13), we obtain
R 27
A, =— (1 —cosB) df = 2R.
™ Jo (17)

The shear center thus does not lie on the cross-section. As discussed earlier, if we want to apply shear
force on beams having such cross-sections so that the beam does not twist, we must apply shear force
so that its line of action passes through shear center. For the present cross-section, we need to create

an extension of it (e.g., by a thin rod as shown in red in Figure 7) and apply shear force there so that the
beam indeed does not twist.
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Figure 7: An extension made to the beam’s cross-section to avoid twisting of the beam due to
application of transverse load
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