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Hello, welcome to this lecture. In this lecture we will continue about discussion on our vertex 

connectivity, cut vertices, cut edges and we will introduce vertex cut and vertex connectivity, edge 

cut and edge connectivity. And we will formally prove the relationship between the vertex 

connectivity and edge connectivity. 
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So, let us start with the definition of a vertex cut. It is also called as a separating set. So, imagine 

you are given a graph  = (, ). Then a proper subset ’ ⊆  of the set of vertices is called the 

vertex cut if removing the vertices in V’ disconnect your graph. So, remember if your graph has 

an articulation point then that articulation point itself can constitute a V’ of potential V’ whose 

deletion will disconnect the graph. 

  

But it might be possible that your graph may not have an articulation point in which case you may 

need to delete more than one vertex in the graph to disconnect it. So, the basic idea here is we are 

now try to generalize the definition of articulation point in terms of a subset of vertices V’. So, if 

I take this graph and if I remove the nodes c and node f then this node g will get disconnected from 

the network, because these edges will also go away. 

 

Whereas I can remove the vertices c, b and a that will ensure that d and a separate out from current 

diagram. So, here as of now the there is no criteria on the cardinality of V’, |V’|. I am just checking 

with a V’ constitutes a vertex cut or not whether deleting the vertices in V’ disconnects the graph 

or not. So, now the question is, can I say that every connected graph which has nodes as a cut 

vertex and answer is yes, except when the graph is a complete graph. 

  

So, if you take a complete graph of a n nodes even if you remove up to n - 1 nodes your graphs 

still remains connected, the reduced graph. So, remember my ’ ⊆ . You cannot say that you can 
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delete the entire graph itself because if you delete the entire set of vertices the entire graph 

vanishes. So, in a complete graph at max, you can delete up to n - 1 nodes with the hope to get a 

disconnected graph, but that is not possible. 

(Refer Slide Time: 03:18) 

 

So, now let us next define vertex connectivity of a graph. And the vertex connectivity of a graph 

is also denoted by this parameter kappa, (). So, the vertex connectivity of a graph is the size of 

the smallest vertex cut. That means the size of the smallest V’ whose deletion will disconnect your 

graph or equivalently it is the minimum number of vertices to be deleted to disconnect your graph. 

 

So, consider this graph and for this graph your () is equal to 2. When your () will be 1 if 

your graph has an articulation point. But if there is no articulation point and you may need to delete 

more than one vertex to disconnect your graph and in this graph we do not have any articulation 

point. So, we need to delete at least two nodes to disconnect the graph namely the nodes c and f.  

 

Whereas if I take this graph G, then my () here will be 0, because my graph is already 

disconnected, and I do not need to delete any additional node to further disconnect it. Whereas if 

I take this graph, then the definition that I have given for vertex connectivity does not make sense 

here. Because even if I delete up to n - 1 nodes here namely 2 nodes if I delete say a and b, I will 

be left with a connected graph. So, that is why to take care of this special case of complete graph, 

I slightly change my definition of vertex connectivity and my definition of vertex connectivity is 
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the following. It is now the minimum number of vertices which needs to be deleted to either 

disconnect the graph or produce a graph with a single node. This later condition is to take care of 

the complete graph. So, with respect to this new definition the () or the vertex connectivity for 

this triangle graph will be 2.  

 

So, it turns out and it is easy to verify that the vertex connectivity of a graph will always be in the 

range 0 to n - 1, where n is the number of nodes in your graph. Because if your graph is already 

disconnected then you do not need to delete any vertex. Your vertex connectivity will be 0 whereas 

if your graph is a complete graph, then you need to delete up to n - 1 nodes to produce a graph 

with a single node. Now, my graph will be called as k-connected, if the vertex connectivity of the 

graph is at least k. That means the size of this smallest vertex cut is k.  

(Refer Slide Time: 06:26) 

 

Now we can keep similar theory with respect to a collection of edges whose removal will 

disconnect the graph. So, we define what we call as an edge cut. So, imagine you are given a graph 

and a collection of edges E’ will be called an edge cut, if deleting the edges in E’ from the graph 

G disconnects your graph. So, there might be several E’s possible. Now when I give the definition 

of edge cut, I am not focusing on the minimum sized E’.  

 

I will be just given an E’ and I have to check whether deleting the edges E’ deletes or disconnects 

my graph or not. So, for instance if I take this graph, if I remove the edge between c and g, c and 
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f and f and g then I get a disconnected graph because the node g now gets disconnected from the 

rest of the network. Similarly, if I remove the node edges between a and d, d and e and d and c, 

then I think this should not be if I remove the edges, it constitutes an edge cut. Because now the 

node d gets disconnected from the entire graph. So, again similar to the question that we asked for 

the vertex cut, let us answer this question whether every connected graph which has nodes as an 

edge cut or not. Again, the answer is yes, except for the case when your graph is already a graph 

with just a single node and no edges. Because if you have a graph with a single node and no edges 

then you do not have any edge to delete at the first place.  

(Refer Slide Time: 08:42) 

 

Otherwise, you always have a set of edges in a connected graph which you can delete to disconnect 

it. So, we now define what we call as the edge connectivity of a graph and this is denoted by λ. 

So, what is the edge connectivity of a graph? It is the size of the smallest edge cut or equivalently 

the minimum number of edges to be deleted which disconnects graph. So, if I take this graph then 

the edge connectivity is 2 because I need to delete two edges to disconnect the graph.  

 

If your graph was a bridge or cut edge then λ will be 1. But if your graph does not have a bridge 

then you need to delete more than one edges to delete the graph to disconnect the graph. If you 

take this disconnected graph, then edge connectivity will be 0, because it is already disconnected, 

and I do not need to delete any edge to disconnect it. But now if I take this graph, which has no 

edges and just a single node then this definition does not make sense here.  
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Because I cannot delete any edge in this graph to let make it disconnected graph. So, to take care 

of the special case, I modify my definition and my modified definition of edge connectivity is the 

following. I define edge connectivity to be the minimum number of edges which needs to be 

deleted to either disconnect the graph or produce a graph with single node. This latter condition is 

added for taking care of this special case.  

 

Because if I apply this definition to the special case then I get λ equal to 0. Because my graph is 

already a graph with a single node and I need to delete 0 number of edges to produce a graph with 

a signal node. Again, it is easy to verify that your edge connectivity will be in the range 0 to n - 

1, 0 for the case when your graph is already disconnected and or for this particular case when your 

graph is just consisting of a single node. And n - 1 for the case when your graph is the complete 

graph. If your graph is a complete graph, then you just delete n - 1 edges incident with any node 

then that node gets disconnected from the rest of the network.  

(Refer Slide Time: 11:12) 

 

So, now we want to fix some upper bounds on the vertex connectivity and edge connectivity. So, 

let us first prove an upper bound on the vertex connectivity. So, my claim here is that for any 

connected, non-complete graph, I stress connected not complete graph the vertex connectivity is 

always less than equal to the minimum degree that is possible in your graph. That means you take 
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the vertex v which has the least degree in the graph say the degree is d, then my claim is that () 

is always less than equal to d.  

 

So, a simple proof for this fact is the following. So, consider this graph or consider any arbitrary 

connected non-complete graph and focus on the vertex v, which has the least degree, namely the 

degree of the vertex v is d. That means the node v has d number of neighbours. Now what happens 

in this graph if all the neighbors of the vertex v are deleted? 

 

So, for instance in this graph the vertex c has the, Sorry the vertex g has the least degree. When 

the vertex e also has the same degree as vertex g so what I am saying is if you remove all the 

neighbors of the vertex which has the least degree then that vertex v gets disconnected from the 

rest of the graph. So, that shows that you do not need to delete more than d number of nodes in the 

graph to produce a disconnected graph.  

 

The maximum number of nodes that you need to delete is d. But then now you might be wondering 

that as per the argument that I have given why it is less than equal to, why not exactly equal to. 

You might argue that I definitely need to delete exactly d number of nodes to disconnect the graph 

or to disconnect the node v from the rest of the graph. Well that is not necessarily true if you 

consider this graph then here the minimum degree is equal to 2.  

 

Because you have the node g which has degree 2, you have a node f which has degree 2, you have 

node d which has degree 2, you have node e which has degree 2 and so on. So, you might argue 

that definitely I need to delete at least 2 nodes to disconnect the graph. Of course, if you can delete 

all the neighbors of d or all the neighbors of e or all the neighbours of f or all the neighbours of g 

you get a disconnected graph. But you do not need to do that much.  

(Refer Slide Time: 14:16) 
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Because if you just delete the node c your graph gets disconnected. So, the vertex connectivity 

comes by here is 1 which is strictly less than the minimum degree in the graph. Now let us put, let 

us derive some upper bound on the edge connectivity and again I take the case of a connected, 

non-complete graph and upper bound here remains the same. My claim is that the edge 

connectivity of a graph is always upper bounded by the minimum degree that is possible in your 

graph.  

 

So, the proof is again very simple, let v be the vertex with least degree, of course, you can have 

multiple vertices with the same least degree focus on one of the vertices v. And then argue that 

what happens if all the edges incident with the vertex v are deleted. So, for instance in this graph, 

g is the vertex v which has the least degree. So, what I am arguing here is that if you delete all the 

edges which are incident with this vertex g. 

 

The vertex g gets disconnected from the rest of the graph. So, that shows you do not need to delete 

more than least degree number of edges in your graph to produce a disconnected graph. But then 

again you get the same question that as per this argument one may get the feeling that λ should be 

exactly equal to the minimum degree in the graph, why less than equal to? Again, consider this 

graph here the minimum degree is 2.  
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So, the vertex f has degree 2 the vertex g also has degree 2. So, that means to remove these two 

edges the node f gets disconnected and in the same way if you remove these two edges the node g 

gets disconnected and so on. So, you might say that I definitely need to delete two edges to produce 

a disconnected graph from this connected graph. The answer is no. Because if you remove this 

edge which is a bridge in this overall graph your graph gets disconnected. So, the  here is 1 not 

2. 

(Refer Slide Time: 16:47) 

 

So, now we want to establish a relationship between the vertex connectivity and edge connectivity. 

And there is a very nice theorem statement which says that you take any connected, non-complete 

graph then the vertex connectivity is always less than equal to the edge connectivity. So, let us 

prove this. The proof is very simple, so imagine you are given a connected, non-complete graph. 

Why I am taking non-complete? Because for a complete graph this inequality is always true, both 

() as well as () are n - 1. 

  

 So, that is why I am taking the case of a non-complete graph and connected graph. Because again 

if I take the disconnected graph, both () and () are zero and inequality holds. So, I take a 

connected, non-complete graph G, which is an arbitrary graph and imagine that E’ constitutes an 

edge cut for G, the minimum edge cut for G which has () number of edges. That means if I 

remove the edges 1, 2, … ,  from the graph, my graph gets disconnected. 
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And say the end points of the ith edge ei is (ui, vi). So, these are the end points of the edge ei. So 

you can imagine that if I remove the edges 1, 2, … ,   from my graph G, I get 2 connected 

components, component C1 and component C2. So, you can imagine the structure of your graph is 

something as follows. You have the vertices images structured in such a way that you can interpret 

1, 2, … ,   as kind of bridges between component C1 and C2. 

 

So, that is one of the endpoints e1 is in component C1 and other endpoint namely v1 is in C2 and so 

on. By the way here, it is not necessary that all the nodes u1 to  or v1 to  are distinct. It might 

be possible that you have just u1 in component C1 and all the edges 1, 2, … ,   has u1 as one of 

its endpoints. That is also possible but similarly you might have a case where the edges are such 

that you only have v1 as the only node in C2 and all this edges 1, 2, … ,   as v1 is one of its end 

point.  

 

But it is not necessary that we want to  and we want to  are all distinct. But for simplicity and 

for pictorial understanding I am representing them as λ number of u vertices and λ number of v 

vertices. And as per my property as per my definition E’ or this collection of edges e1 to 

 constitutes an edge cut. That means even if you do not delete a single edge from this collection 

of edges the graph G still remains connected.  

 

Only when you delete all this λ edges the graph gets disconnected into components C1 and C2. 

That is the property of this collection of edges E’. Now from these edges I have to show the 

existence of at least, I have to show the existence of some  number of vertices whose deletion 

will definitely disconnect my graph. Because if I can show you the existence of some λ number of 

vertices whose deletion will disconnect my graph then that shows that my vertex connectivity is 

also upper bounded by λ, and hence it shows that the vertex connectivity is upper bounded by edge 

connectivity.  

 

So, let us do that, so first delete the  −  u vertices namely to delete the end point of e1 from the 

component C1, you take the edge e2 and delete the edge u2 from the component C1. And similarly, 

you take the delta minus 1 edge and delete the u vertex from the component C1. So, you have 

deleted λ-1 vertices from your graph G.  
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And remember as per the definition of deletion of a vertex and I delete a vertex all the edges 

incident with that vertex also gets deleted from the graph. So, my new graph I call it as the graph 

H and my new graph H will look something as follows. The edge   is still there in my graph G. 

And because of that the end point   is still there in my graph G, now what can I say about my 

graph H? My graph is still connected graph.  

 

It is not yet disconnected, because I still have one bridge or one edge going from  to the 

component C2 and that will ensure that everything in C1 is reachable to C2 via the edge . Now 

here is the crucial claim, my claim is that the edge  constitutes a cut edge or a bridge for the 

reduced graph H. And the poof is very straight forward.  

 

If this edge  does not constitute a cut edge for the reduced graph H, that means that even if I 

delete this edge , still somehow everything in C1 is reachable to C2. That is the implication but 

if that is the case then I get a contradiction that the collection of edges E’ which I assumed to be 

the minimum number of edges whose deletion will disconnect the graph G is not a valid 

assumption. So, I remember I assume that as soon as I remove the edges e1 to , my graph get 

splitted into 2 parts, C1 and C2 such that nothing in C1 is reachable to C2 and vice versa.  

 

So, I have already removed e1 to 1. And now I mark queuing that if I remove  my graph H 

gets splitted into C1 and C2, such that C1 is completely disconnected from C2 and vice versa. If that 

is not the case that means I need to further delete more edges even after removing e1 to  to 

disconnect my original graph G, which goes against the assumption that E’ was the collection of 

minimum edges whose deletion will disconnect my graph.  

 

So, I get this implication, remember I have already removed λ-1 vertices. And now I have to show 

that if I add one more vertex to this collection of λ-1 vertices, which I have already deleted from 

G, I get a vertex cut for my graph G. Now, you might be tempted to say that if I include  to this 

collection of vertices u1 to 1, it will always constitute a vertex cut for G, or you might be 

tempting to say that if I include  the collection of vertices in u1 to  1, that will constitute a 

vertex cut for G.  
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You can not necessarily do that you have to argue here based on cases. So, since I have argued 

that the edge  constitutes a bridge or a cut edge for the graph H, I can definitely say that one of 

its end point is a cut vertex for the reduced graph. Because then only the edge  can constitute a 

bridge. And this is a property which is there with respect to any bridge or any cut edge of a graph.  

 

I can always say that if I have a cut edge in a graph, one of its end point definitely a cut vertex. 

Because if none of the end points of the edge is a cut vertex, then in the first place that edge was 

not a cut edge, a very simple fact. Now, I have two possible cases. If  is a cut vertex for H, then 

I can say that the collection of u1 to  1, and the vertex  constitutes the vertex cut for G.  

 

Whereas case 2 is the following, if it is the if  is the cut vertex for the graph H then I can say 

that the collection of u1 to  1, along with  will constitute a vertex cut for G. So, you cannot 

always say that its u1 to  which is always a cut vertex for the graph G. It depends, once you have 

removed the first   − , edges and one of the end points of those  −  edges in one of the 

components you will be left with of cut edge and your graph may be something as follows.  

 

So, your graph may be something like this. So, you might have got  and then you have  and 

then the rest of the graph is still, that means your reduced graph H is something like this. In that 

case, you cannot say that if I just delete  along with u1 to 1, I get disconnected graph. No, by 

removing  you get the whole graph C2 as you reduced graph, which is connected.  

 

So, in that case, you have not obtained a cut vertex. It is only when you remove  that this portion 

of C2 gets disconnected from . So, depends upon which end point of the cut edge  is the cut 

vertex for the reduced graph, and that cut vertex along with the λ-1 vertices, which you have 

already removed will give you a vertex cut for the original graph G. So, that is the subtle point, 

the two cases. Otherwise the rest of the proof is straight forward.  

(Refer Slide Time: 28:23) 
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So, now let us unify the relationship between the vertex connectivity and edge connectivity taking 

care of various cases. We just proved that for any connected, non-complete graph the vertex 

connectivity is always less than equal to edge connectivity. We know that for disconnected graphs, 

() = () = 0. And for complete graphs, we know that () = () =  − .  

 

And you also prove that for connected non-complete graphs, individually the vertex connectivity 

is upper bounded by the minimum degree, () ≤ min
∈

   degree ()  and the edge connectivity is 

also upper bounded by minimum, () ≤ min
∈

   degree (). So, unifying all these things we can 

say the following. Irrespective of whether my graph is connected, disconnected, complete, non-

complete the vertex connectivity is always less than equal to edge connectivity and edge 

connectivity is always less than equal to the minimum degree in the graph. () ≤ () ≤

min
∈

   degree ().This relationship takes care of all the cases here, complete, non-complete, 

connected disconnected and so on. 
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