
Chapter 14: Multithreading and Concurrency

Introduction

Modern applications often require performing multiple tasks simultaneously—be it a web

browser loading a page while rendering images, or a video game processing user input, rendering

graphics, and playing music concurrently. Multithreading and concurrency are fundamental to

achieving such multitasking. This chapter delves deep into the concepts of multithreading,

concurrency, and synchronization in programming, especially in Java and other object-oriented

languages. It lays the foundation for building efficient, scalable, and responsive systems.

14.1 Overview of Multithreading

What is a Thread?

A thread is the smallest unit of execution in a process. A process may have one or multiple

threads that share the same memory space but execute independently.

Single-threaded vs. Multi-threaded Applications

• Single-threaded: Executes tasks sequentially. Less overhead, but poor responsiveness.

• Multi-threaded: Executes multiple tasks concurrently using different threads. Improves

responsiveness and performance on multi-core processors.

14.2 Life Cycle of a Thread

The life cycle of a thread includes:

1. New – Thread object is created but not started.

2. Runnable – Thread is ready to run and waiting for CPU.

3. Running – Thread is currently executing.

4. Blocked/Waiting – Thread is waiting for a resource or signal.

5. Terminated/Dead – Thread has finished execution or been stopped.

14.3 Creating Threads in Java

Using the Thread Class:

class MyThread extends Thread {
 public void run() {
 System.out.println("Thread is running");

 }
}
MyThread t1 = new MyThread();
t1.start();

Using the Runnable Interface:

class MyRunnable implements Runnable {
 public void run() {
 System.out.println("Runnable thread is running");
 }
}
Thread t2 = new Thread(new MyRunnable());
t2.start();

14.4 Thread Methods

Commonly used methods in the Thread class:

• start() – Starts the thread.

• run() – Contains the code executed by the thread.

• sleep(ms) – Pauses the thread for specified milliseconds.

• join() – Waits for the thread to finish.

• yield() – Suggests the thread scheduler to pause current thread and allow others to

execute.

• interrupt() – Interrupts the thread.

14.5 Thread Priorities and Scheduling
• Threads can be assigned priorities using setPriority().

• JVM schedules threads based on priority but exact behavior depends on the OS

scheduler.

• Priorities: MIN_PRIORITY (1), NORM_PRIORITY (5), MAX_PRIORITY (10).

14.6 Concurrency and Parallelism

Concurrency:

Multiple tasks are in progress at the same time (context switching). It may run on a single CPU

core.

Parallelism:

Tasks are literally executed at the same time using multiple CPU cores.

Concurrency ≠ Parallelism, but they can coexist.

14.7 Synchronization

When multiple threads access shared resources (variables, files, databases), data inconsistency

may arise. Synchronization ensures that only one thread accesses a critical section at a time.

Synchronized Methods:

synchronized void increment() {
 count++;
}

Synchronized Blocks:

synchronized(this) {
 // critical section
}

14.8 Inter-thread Communication

Threads can communicate using wait(), notify(), and notifyAll() methods from the

Object class.

Example:

synchronized(obj) {
 obj.wait(); // thread waits
 obj.notify(); // wakes one waiting thread
}

This is used in producer-consumer problems, thread coordination, etc.

14.9 Deadlock and Its Avoidance

Deadlock:

Occurs when two or more threads are blocked forever, each waiting for the other to release a

lock.

Example:

Thread A locks Resource 1 and waits for Resource 2; Thread B locks Resource 2 and waits for

Resource 1.

Avoiding Deadlock:

• Lock ordering

• Timeout for lock acquisition

• Using try-lock mechanisms (e.g., ReentrantLock.tryLock())

14.10 Thread-safe Collections and Concurrent Utilities

Java provides thread-safe collections and utilities in java.util.concurrent package.

Key Classes:

• ConcurrentHashMap

• CopyOnWriteArrayList

• BlockingQueue

• ExecutorService

• Semaphore, CountDownLatch, CyclicBarrier

These allow high-performance concurrent programming without manually handling

synchronization in many cases.

14.11 Executors and Thread Pools

Executors:

Provide a flexible way to manage and reuse threads via thread pools.

ExecutorService executor = Executors.newFixedThreadPool(5);
executor.execute(new Task());
executor.shutdown();

Types:

• FixedThreadPool

• CachedThreadPool

• SingleThreadExecutor

• ScheduledThreadPool

Advantages:

• Better resource management

• Avoids thread exhaustion

• Reduces latency from frequent thread creation/destruction

14.12 Atomic Variables

java.util.concurrent.atomic Package:

Provides lock-free, thread-safe operations on single variables.

Examples:

• AtomicInteger

• AtomicBoolean

• AtomicLong

AtomicInteger counter = new AtomicInteger(0);
counter.incrementAndGet();

14.13 Fork/Join Framework (Advanced Topic)

Used for divide-and-conquer style parallelism.

Example:

Breaking a task into smaller subtasks recursively (e.g., merge sort), running them in parallel

using ForkJoinPool.

ForkJoinPool pool = new ForkJoinPool();
pool.invoke(new RecursiveTaskImpl());

14.14 Best Practices for Multithreading
• Minimize synchronization to reduce contention.

• Prefer concurrent utilities over manual synchronization.

• Avoid sharing mutable state.

• Always shut down executor services.

• Use thread-safe data structures.

• Avoid unnecessary thread creation.

• Use thread pools for large-scale task execution.

• Use profiling tools to detect deadlocks and performance bottlenecks.

Summary

In this chapter, we explored the core principles and techniques of multithreading and

concurrency—vital for modern, high-performance applications. From thread creation to inter-

thread communication, synchronization, deadlocks, and advanced concurrency utilities,

mastering these topics enables developers to write scalable, efficient, and responsive programs.

With growing demand for concurrent applications across domains—from backend systems to

mobile apps and AI—understanding concurrency is not just useful, but essential for all serious

programmers.

	Chapter 14: Multithreading and Concurrency
	Introduction
	14.1 Overview of Multithreading
	What is a Thread?
	Single-threaded vs. Multi-threaded Applications

	14.2 Life Cycle of a Thread
	14.3 Creating Threads in Java
	Using the Thread Class:
	Using the Runnable Interface:

	14.4 Thread Methods
	14.5 Thread Priorities and Scheduling
	14.6 Concurrency and Parallelism
	Concurrency:
	Parallelism:

	14.7 Synchronization
	Synchronized Methods:
	Synchronized Blocks:

	14.8 Inter-thread Communication
	Example:

	14.9 Deadlock and Its Avoidance
	Deadlock:
	Example:

	Avoiding Deadlock:

	14.10 Thread-safe Collections and Concurrent Utilities
	Key Classes:

	14.11 Executors and Thread Pools
	Executors:
	Types:

	14.12 Atomic Variables
	java.util.concurrent.atomic Package:

	14.13 Fork/Join Framework (Advanced Topic)
	Example:

	14.14 Best Practices for Multithreading
	Summary

