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Divide and Conquer: Closest Pair of Points 

We now look at another divide and conquer algorithm, this is the geometric problem, 

given a set of points we would like to compute the closest pair of points among them. 

(Refer Slide Time: 00:11) 

So, recall that at the beginning of this set of lectures to motivate the need for more 

efficient algorithms, you consider the example of the video game, if there are several 

objects on the screen and you might want to find it at any given point, the closest pair of 

objects among them. So, for this again a naive algorithm could be to explicitly compute 

the distance between every pair of these n objects, which should be an order n squared 

algorithm. So, what we are going to see is that we can actually use divide and conquer 

and produce an order n log n algorithm for this problem. 
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(Refer Slide Time: 00:45) 

 

So, formally we are looking at points in two dimensions, so each point is given by an x y 

coordinate x p, y p and we are using the usual utility and motion of distance that is the 

distance given by Pythagoras used formula, which is that the distance between p 1 and p 

2 is the square root of x 2 minus x 1 whole square plus y 2 minus y 1 whole square. So, 

you just assume that there is a distance formula which we can use whenever we want to 

compute the distance between a pair of points. 

So, our target is given a set of n points p 1 to p n to find the closest pair among them and 

it will be convenient for the analysis of the algorithm that we are going to suggest that no 

two points in this set have the same x or y coordinate. So, every x coordinate among 

these n x coordinates is different, every y coordinate among these n coordinates is 

different. Now, it can be extended by algorithm we are going to show, it can be extended 

to deal with the case where this assumption is not true, but it will then unnecessarily 

complicate the understanding of the algorithm. 

So, let us just assume that we are solving this special case of the problem, where every 

point is at a different x coordinate and at different y coordinate from every other point. 

So, as we have seen a brute force solution would be to try every pair, compute d of p i p j 

and then report the minimum amount of distances. So, this would be an order n squared 

algorithm. 
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So, let us see first the same problem if we had only one dimensional points. If we have 

one dimensional points then all these points lie along the line, which we can assume this 

the x axis. So, we have a bunch of points and we want to find the closest point. So, what 

we can do is we can first sort them, so that we have the points in increasing order of x 

coordinate and then it is easy to see that the distances that we need are the distances 

between two adjacent points. 

Because, if I look at a point, the nearest point if either the one on it is left and one on it is 

right. So, I just need to scan this x 2 minus x 1 distance, then x 3 minus x 2, so I just need 

to scan these n minus 1 distances and then keep track of the smallest gap between these 

two points and that would give me the smallest distance among the overall pair of overall 

n points. So, here the algorithm is n log n, because it takes n log n times to sort the points 

in x coordinate, after that finding the minimum is actually very easy. So, in one 

dimension this problem is very easy to solve, the challenge is to solve it in two 

dimensions. 
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(Refer Slide Time: 03:12) 

 

So, it two dimensions if we are going to use divide and conquer, we need a way of 

separating the points into two groups, a roughly equal size or a hopefully exactly equal 

size. So, a natural way is this is the geometric problem is to separate them based on their 

positions. So, this is my overall set of points, then this natural to try and draw some kind 

of a line and say that half the points are here and half the points are there. 

So, we will do it using a vertical line, so we will split this set not by some arbitrary line 

like this, but rather we will try and split it by a vertical line. So, somewhere which may 

not be half way across, because the points may be scattered in an uneven way, we will 

split it, so that there are exactly the same number of points the left to the line and to the 

right to the line. 

So, now because of we divide and conquer thing what we will do is, we will compute the 

smallest distance among the points to the left, separately we will compute the smallest 

distance points from the right. But, this does not tell us anything about distances between 

points on the left and points on the right and they could very well be points very close to 

each other across the boundary. 

So, I could have add four points here, four points there and I could have add a pair of 

points which spans this black line, which are actually closer together, then any two points 

to the left or two point to the right. So, we need to compute the closest pairs across the 

separating line and this is the challenge. 
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So, let us look a little closer at how we do this. So, we will make the further step before 

we do this thing recursively. Given a points P we will compute points, the set of points 

we will compute two sorted orders. So, we will first scan these points by x coordinate 

from left to right and we will listed in this order and call it P x, then we will scan this, the 

list P from... 

So, we will sort on the y coordinate and call this P y, so from P we will produce two list, 

one sorted by x and one sorted by y. Then, so we will assume that we have done this of 

course, we can do this we know in order n log n time right to the beginning. Now, the 

next step is to do this recursive call and so when we do the recursive call, because we 

have P x sort it by x coordinate, we know that the line that we need to draw is the one 

that separates P x into two equal parts. 

So, we need to go to the midpoint of P x and draw a line at the x coordinate separating 

the midpoint from the next point. So, the position of this line is fixed once we know P x, 

fix meaning we know between which two points. Remember, we assume that no two 

points at the same x coordinate, no two points at the same y coordinate. So, if I just look 

for the median value or the value at the middle of x, I draw a line there. 

Now, I separately doubt into two equal parts they assumption, because I have done this 

able midpoint of P x. So, I have two set Q and R, but in order to continue this recursion I 

need to assume that Q is sorted in both x and y and so is R. So, I need to assume that I 

have some efficient way of extracting for the each of these some problems, a similar 
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ordering of the points sorted by x, sorted by y. So, I need to efficiently compute Q x and 

Q y, R x and R y. 

(Refer Slide Time: 06:39) 

 

Q x and Q y is easy, because this whole thing earlier was P x and then we split this thing 

midpoint. So, everything to the left of the midpoint is Q x and everything to the right of 

the midpoint is R x. So, in one scan of P x I go up to half way and I put everything in Q x 

and then in half way point I put everything in R x lambda. Now, what about y? Now, y 

the problem is as I am going up these two points are in Q y, then this point goes into R y 

because in the overall scheme of things in P y, these are all listed globally by y 

coordinate. 

So, I would have to move this to R, then I would to put this back into... So, next one 

again possibly R any one how you use this, the next one is Q and so on. So, as I am 

going up some points going Q y and some going R y. Now, how do I determine that 

without going over this too many times, so the key is that having done this split of x, we 

note this dividing line. So, we know which x coordinate separates Q from R. 

So, as we go through P y, we will look at each point and if the x coordinate is less than 

this midpoint, so let us call this x Q, if it is less than x Q, then we push it into Q y, if it is 

x is greater than x Q then we push it into R y and because if it is originally sorted, we are 

building up Q y and R y also in sorted order. So, ones scan of P y you get Q y and R y. 

So, in linear time we can take the given sorted list P x and P y and separately doubt into 

sorted list Q x, Q y for the left half R x, R y for the right half. 
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So, now when we call our algorithm with closest pair P x, P y it will split recursively into 

closest pair Q x, Q y and R x, R y to the left and right half. So, we will, you can assume 

as usual that we will solve these recursively, we will get the closest distance there. Now, 

we have to worry about how to combine them, how to take care of these points whose 

distance pans the interval, the line separating the two halves. 

(Refer Slide Time: 08:58) 

 

So, if we solve this problem on the left among all the points in Q, I will identify some 

pair of points as being the nearest pair with the distance d Q. And now similarly, if I do 

solve the problem right I would identify some pair of points as being the minimum of the 

right with distance d R. So, now we are interested in this smaller or these two, because 
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the smaller are these two is a candidate for the overall minimum distance. 

So, now we are looking at points which could be within at d Q is smaller than the d Q 

across this boundary. So, let d be the minimum of d Q and d R, so it is the smaller of 

these two, so in this particular example d is d Q. Now, the claim is that if you look at this 

zone here which is plus minus d distance away from the separated line, then if I have 

some point outside this and if I want to look at any point across on the other side, this 

distance from here to here is key plus some distance on either side therefore, it is more 

than d. 

So, it is more than the smaller of d Q and d R, so it cannot be a candidate for are overall 

smallest distance. So, these kind of things are useless, there is no pointer looking for any 

line which is any pair whose one end point is outside this zone. Because, if it is outside 

the zone, then it can only be at least b plus something away from something on the other 

side to the line. So, it is enough to look at points inside the zone and both sides. So, we 

only need to consider points across the separator which line within this plus minus d, any 

pair outside this cannot be the closest pair of the line. 

(Refer Slide Time: 10:44) 

 

So, let us take a closer look, so this is my plus minus these on, let us this is minus d, this 

is plus d. Now, what we are going to do is, we are going to further break it up into these 

squares of size d by 2, so I had d by 2 plus d by 2. So, this whole thing with d, I am 

going to consider all these steps. So, the claim is that inside such a box I can have at 

most one point, I cannot have two points. Why, because the furthest separation within a 
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box is across the diagonal, the further step two points can be in the box is a 2 n points to 

the diagonal. 

But, the diagonal of this square of size d by 2 is square root of d by 2, so this is some 

points 0.047 d. So, this is less than d strictly less than d, but notice that this square is 

completely on one side the right times, either on the left or the right and both on the left 

and right we know that the minimum separation is d, there is no point on one side of the 

line there are no two points closer than d, because d is a minimum of d Q and d R. 

So, therefore in each of these boxes we can have at most one point and now we start 

looking at any points. So, look at a point here in this box, now the claim is that if I have 

to be within distance d, then how far away can I be well if you think about it the furthest 

you can be or the furthest box you can go to, go to that box. So, you can be a little more 

careful about is, but it certainly cannot be any further than that box. 

So, if you have to go from this box basically if we have to go more than this distance 

away, then it will be more than d away. So, the claim is that any point within this 

distance d must lie within the next 4 by 4 segments. So, we have to compare each point 

only against 15. Now of course, we will compare it will one scan from bottom to top. So, 

this could have the points below this they could again compared when we consider those 

and before. 

So, we will consider, we will do this scan in this order as we will see in the net. So, 

therefore, we only need to consider this point against points in these 16 squares around it. 

So, that is the fix number independent of how many points they actually have. 
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So, formally what we will do is we have this and this side we have Q y which is sorted 

and this side we have R y which is sorted, but remember they are both sorted. So, we will 

do a kind of merge, so we will go through Q y and R y we will pick the next one in 

sorted y order between Q y and R y. If the x coordinate is remember this is an x Q are 

originally separating point plus d and minus d. If the x coordinate of the point that be 

find is between x Q plus d and x Q minus d, then we will added to a list S y. 

So, S y will now the sorted list of points within this pan from bottom to top extracted 

from Q y and R y in linear line. Now, within this list these boxes will now we are all 

ordered. So, if I just scan them then I will find that I all these... So, they would be 

possibly 4 points which come from these 4 boxes, 4 from these 4 boxes and so on. So, I 

can definitely find the next 15 points in this list and a compare only with these. So, this is 

the linear scan. 
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So, in other words we have this following algorithm, so we start with by assuming that 

we have set off a problem. So, that P has been split into two copies P x and P y sort it by 

x, sort it by y. Now, if we have less than 3 points, 3 points are less then, we just do it by 

brute force compute them closest pair and return the answer. So, the answer consists of 

the distance on a pair, the points which are at the distance, if it is more than 3 then we do 

this recursive thing. 

So, we from P x and P y as we said we construct Q x, Q y and R x, R y and this we say 

we can do linear time. Then, we have recursively solve this solution, the solve problem 

of Q and R and we will get these two distances d x and d R from this we will take d to be 

the minimum of d Q and d R. So, using this we will set up this S y the list of all points 

inside that zone and then we will scan that list to find within that zone which are the 

points, which are in closest distance d S. 

Now, if d S is more than d Q the minimum of d Q and d R, then s does not contribute 

anything, but if it is less gives as the correct answer. So, we will return either the d Q the 

answer produce from the left or the answer produce from the right or the answer 

produced from our in between zone depending on which of these distances as the 

smallest. So, this is the basic algorithm you have to do a little bit more work actually 

code it correctly, but this gives the overall structure of the algorithm. 
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So, we have a non recursive part which is to first compute the initial sort it list P x and P 

y, this takes order on n log n time force. Because, sorting text n log n time then having 

set of this recursive thing the overall recursive problem divides n points into two sets of 

n by 2. So, we have a familiar thing which is T of n is 2 times T of n by 2 and then 

because all the setting up time and all these combining time is linear, we have exactly the 

recurrence for merge sort. So, therefore, the recursive part also gives as order n log n, so 

we have a initial sorting phase which n log n, we have a recursive part which is n log n 

and therefore, overall this algorithm is n log n. 
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