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1.19 Tacheometry  
In tacheometry, horizontal and vertical distances are determined by angular observations with 
a techeometer. Tacheometry is more accurate than the chaining/taping, and more rapid in rough 
and difficult terrain where levelling is tedious and measuring distance by chaining/taping is not 
only inaccurate but slow and laborious. It is a best suited method when taking observations for 
steep and undulating/broken ground, river, water or swampy areas.  Tacheometry is preferably 
used for traversing, but it is also used for contouring. 
  
1.19.1 Instruments used 
The main instruments used in tacheometry are a tacheometer, and a levelling rod.  A 
tacheometer is a transit theodolite where telescope is fitted with a special diaphragm, called 
stadia hairs, i.e., a diaphragm fitted with three horizontal hairs; one at the top, another in the 
middle and third at the bottom of diaphragm. These horizontal hairs are equidistant from the 
central one. The types of stadia diaphragm commonly used in tacheometers are shown in Figure 
1.46. The term tacheometer is restricted to a transit theodolite which is provided with an 
anallactic lens in the telescope. The essential characteristics of a tacheometer are that the value 
of the multiplying constant (K= f / I) should be 100 and additive constant (C= f + d) should be 
zero. Levelling rod used is similar to as used in levelling work. To make the value of additive 
constant zero, an additional convex lens, known as anallatic lens, is provided in the telescope. 
By having K=100 and C=0, the calculation work is considerably reduced. 
 

 
Figure 1.46 Stadia diaphragm commonly used in tacheometers 

 
1.19.2 Methods of tacheometry 
The principle used in tacheometry is that the horizontal distance between an instrument-station 
and a point where levelling rod is kept can be determined with the staff intercept (difference of 
top reading and bottom reading).  For determining the horizontal distance between two points, 
tacheometer is kept at one point and levelling staff is kept at another, and stadia readings on 
the levelling staff are read.  
 
Case I- When the line of sight is horizontal 
The staff intercept reading is multiplied by the instrument constant (K) and added with an 
additive constant (C) to get the horizontal distance between tacheometer and levelling staff. 
The horizontal distance (D) is computed as; 
 
D = K S + C          (1.16) 
 
Where K is the multiplying constant (usually 100), S is the staff intercept and C is the additive 
constant (usually zero). In a simplified from, the above equation can be written as- 
 
K = 100S          (1.17) 
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There could be situations when the ground is undulating and the levelling staff is either above 
or below the line of sight. In such cases, a vertical angle subtended by the point at instrument 
station is also measured, in addition to stadia readings, to determine the horizontal distance 
using trigonometrical relationship. This is a fast method to determine the horizontal distance. 
 
The vertical distance (elevation difference) between instrument and levelling staff can also be 
determined, if we take one more levelling staff observation at the BM. 
 
RL of levelling staff point = RL of instrument axis– Central hair staff reading  (1.18) 
  
Case II- When the line of sight is inclined 
In case the ground is undulating and horizontal sights are not possible, inclined sights are taken. 
In this case, the staff may be held either vertical or normal to the line of sight. In general, most 
commonly adopted method is when the staff is held vertical as it is simpler in calculation.  
 
When the staff is held vertically.  
In Figures 1.47 and 1.48, the staff is held vertical; in one case the point is at higher elevation 
and in other case, the staff is at lower elevation than the tacheometer. From tacheometer, all 
the three stadia readings and vertical angle θ subtended by middle wire reading at C is observed. 
From C, if we draw a perpendicular line to line of sight O’C will cut O’A line at A’ and 
extended O’B line at B’. Let A’O’C be angle then by geometry B'O’C will also be angle  
In two Δs, AA’C and CB’B, angles AA’C and CB’B are equal to (900+) and (900–), 
respectively. The angle  being very small, angles AA’C and CB’B may be considered 
practically equal to 900. 
 

 
Figure 1.47 Staff held vertical at higher elevation 

 

 
Figure 1.48 Staff held vertical at lower elevation 
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  A’B’ = AB cos  = S cos  
      D = L cos         

           

            

And        V = L sin          

   

     

Also V = D tan         (1.21) 
 
Knowing the value of V, the RL of the staff point is calculated as-  

When  is an angle of elevation (Figure 1.48) 
RL of staff station P = RL of instrument axis + V – h    (1.22) 
When  is an angle of description (Figure 1.49). 
RL of staff station P = RL of instrument axis – V – h    (1.23) 
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1.20 Trigonometrical Levelling 
It is an indirect method of levelling in which the elevation of the point is determined from the 
observed vertical angles and the measured distances. It is commonly used in topographical 
work to find out the elevations of the top of buildings, chimneys, churches etc., from a distance. 
This is a faster method to get the elevations of top of structures and objects. Elevation of a BM 
in the area must be known. 
 
1.20.1 Finding height of an object which is accessible  
Let PP’ is a tower whose elevation of the top is to be determined (Figure 1.49). Set up the 
theodolite at a convenient ground point A so that the top of tower and a staff kept on the BM 
can be bisected. Measure vertical angle of the top of tower as well as take the staff reading 
at the BM. Measure D, the horizontal distance between theodolite station and tower.  

 

Figure 1.49 Measurement when the object is accessible 

To find the height of the object above a BM:  
 Let H = height of the object above the BM 
 h = height of the tower above the instrument axis 
 hs = height of the instrument axis above the BM 
 = vertical angle of the top of tower at the instrument station 

D = horizontal distance from the instrument station to the base of the tower.  
Then, h = D tan  
H = h + hs = D tan  + hs       (1.24) 

If the distance D is large, correction for curvature and refraction, i.e.,  is 

to be applied.  
 

1.20.2 Finding height of an object which is inaccessible  
To find the height of the tower PP’ above a BM, select two stations A and B suitably on a fairly 
level ground so that these points lie in a vertical plane with the tower, and measure the distance 
AB with a tape (Figure 1.50). Set up the theodolite at station A to take a staff reading kept on 
the BM. Read the vertical angle . Shift the theodolite at B point and take similar observations 
as taken at A point. Read the vertical angle. 
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  Figure 1.50 Measurement when object is inaccessible 

Let  
b = horizontal distance between A and B. 
D = distance of the object from A point.  
h = height of the tower P above instrument axis at A’. 
ha = staff reading at the BM when the instrument is at A.  
hb = staff reading at the BM when the instrument is at B. 
hd = the level difference between A and B of the instrument axes = ha~hb.  
 
When the instrument at farther station B is higher than that at the near station A (Figure 
1.51). 
 
h = D tan    
h – hd  = (D + b) tan  
Putting the value of h from (i) and (ii), 
D tan  - hd = (D + b) tan 
or  D (tan – tan hd + b tan  

or          (1.25) 

Put this value of D in h = D tan : 

        (1.26) 

Height of the tower above the BM,  
H = h + hd  
 
When the base of tower is inaccessible and instrument can’t be kept in same vertical plane 
 
Let A and B be the two instrument stations not in the same vertical plane as that of a tower P 
(Figure 1.51). Select two stations A and B on a level ground and measure the horizontal 
distance b between them. Set the instrument at A and level it. Use it as a level and take a 
backsight hs on the staff and kept at BM. Now, measure the angle of elevation α1 to P, and 
horizontal angle BAP (θ1).   




tantan

tan




 dhb
D





tan.

tantan

tan




 dhb
h



76 
 

 
Figure 1.51 The base of tower is inaccessible and instrument is kept in different vertical planes 

 
Now, shift the instrument to point B, and measure the angle of elevation α2 to P. Also measure 
the horizontal angle ABP at B as θ2.  
Let 
α1 = angle of elevation from A to P 
α2 = angle of elevation from B to P 
θ1 = Horizontal angle BAC (or BAP) at station A 
θ2 = Horizontal angle ABC (or ABP) at station B 
h1 = PP1 = height of the object P from instrument axis of A 
h = PP = height of the object P from instrument h2 PP2 axis of B 
In triangle ABC 
Angle ACB = 1800 – (θ1 + θ2) 
AB = b 
BC= b sin θ1 / [sin (1800 – (θ1 + θ2))] 
AC = b sin θ2 / [sin (1800 – (θ1 + θ2))] 
 
By knowing the AC and BC from equation, we get- 
h1 = AC tan α1 
h2 = BC tan α2 
RL of P = height of the instrument axis at A + h1     (1.27) 
or 
R.L of P = height of the instrument axis at B + h2     (1.28) 
Height of the instrument axis at A = RL of BM + BS 
Height of the instrument axis at B = RL of BM + BS 
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1.21 Traverse Computations 
One the field observations are completed for a traverse; the next task is to compute the 
coordinates of traverse stations. These coordinates are required to be plotted to carry out the 
detailed mapping of the area. For the computation of coordinates (x, y and z), following 
observations are to be taken in the field: 
  
(i) Magnetic bearing of at least one traverse line 
(ii) Length of at least one traverse line 
(iii)Elevation of at least one traverse station  
(iv) Included angles between traverse lines 
(v) Vertical angles of traverse lines 
(vi) Real-world coordinates of one traverse station  

 
Once the coordinates of traverse points are computed, these are plotted on a plan with reference 
to x-axis and y-axis. If the length and bearing of a line are known, its projections on the y-axis 
and x-axis may be done, called latitude and departure of the line, respectively. Latitude is 
measured northward, and is also known as northing, and departure, if measured eastward is 
known as easting.  The latitude of a line is determined by multiplying the length of the line 
with the cosine of its reduced bearing; and departure is computed by multiplying the length 
with the sine of its reduced bearing (Figure 1.52). If l is the length of the line and θ is its reduced 
bearing, then latitude and departure are calculated as- 

 
Figure 1.52 Comutation of latitude and departure of a line 

 
The reduced bearing of a line will determine the sign of its latitude and departure, the first letter 
N or S of bearing defines the sign of the latitude and the last letter of bearing E or W defines 
the sign of the departure. If the WCB of a line is known, it can be converted into RB to 
determine the sign of latitude and departure. By knowing the bearing of one line and the 
included horizontal angle, the bearings of remaining lines can be computed.  The latitude and 
departure of any point with reference to the proceeding traverse station are called consecutive 
co-ordinates of the station. The coordinates of a traverse station with reference to a common 
origin are called independent coordinates. 
 
1.21.1 Adjustment of a closed traverse 
Due to errors present in the observations, the coordinates of a closed traverse stations when 
plotted may not close itself, but will have a small difference. The errors in the linear and angular 
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observations therefore are to be adjusted before using them for computational purpose. It is 
also called Balancing a Traverse. These errors include: 
(a) Adjustment of angular errors 
(b) Adjustment of bearings. 
(c) Adjustment of closing error of traverse 

   
(a) Adjustment of angular error  
In a closed traverse, the sum of all interior angles should be equal to (2n–4) x 900, and that of 
the exterior angles should equal (2n + 4) x 900, where ‘n’ is the number of sides in a closed 
traverse. The difference between this sum and the sum of the measured angles in a closed 
traverse is called the angular error of closure. The angular error of closure should not exceed 
the least count of theodolite (x) used, i.e., x √n. If it exceeds, observations are to be repeated. 
These permissible errors are shown in Table 1.6. To distribute the error, one of the approaches 
is to distribute it equally among all the angles, if all the angles are measured with equal 
precision and under similar conditions, this error. The other approach is to distribute the error 
in each angle according to its magnitude. This approach is considered to be more accurate and 
requires computation, however, the first approach is simple and fast and may not be as accurate.   
  

Table 1.6 Permissible errors in Theodolite traversing : 
Traversing for Permissible Angular Error Permissible Linear error 

Land surveys and location of roads, 
railways, etc  

1 in 3000 

Survey work for cities and important 
boundaries  

1 in 5000 

Important Surveys 
 

1 in 10, 000 

Where N = Number of angles 
 
(b) Adjustment of bearings 
Many times, bearings of a traverse are measured, instead of angles.  In such cases, the closing 
error in bearings may be determined by comparing the fore bearing of a line and back bearing 
of that line of a closed traverse, as they should differ by 1800. The difference is the error which 
has to be adjusted in the bearings. Alternatively, we compare the known bearing of the traverse 
line with the measured bearing, and difference, if found, is adjusted in the bearings. At the end, 
we must ensure that the back bearing and fore bearing of all the lines differ by 1800.  
 
If we know the RB of a traverse line, the RBs of remaining lines are computed using the 
adjusted (corrected) included angles.  
  
(c) Adjustment of closing error 
For all the sides of traverse, latitude and departure are computed using the adjusted RB of lines, 
and proper sign is used as per the quadrant of traverse line. Ideally, the sum of all latitudes and 
sum of all departures must be zero in a closed traverse.  But due to errors in the field 
measurements (e.g., bearings, distances, etc., the sum of all latitudes and sum of all departures, 
individually, may not come out to be zero). That means, the traverse will not close at the starting 
point. The distance by which the end point of a survey fails to meet with the starting point is 
called the closing error or error of closure. Figure 1.53 shows the plotting of an anticlockwise 
closed traverse ABCDEA, where A and A1 are the starting and end points, respectively, and 
AA1 represents the closing error.  

N'1

N"30

N"15
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Figure 1.53 Representation of closing error 

 
The magnitudes of two components of this error (A1A2 and AA2) perpendicular to each other 
may be determined by finding the algebraic sum of the latitude (ΔL), as well as departures 
(ΔD). Since the triangle A1A2A is right-angled at A2, the linear closing error (AA1) is computed 
as:  

Closing error =   (1.29) 

The direction of the closing error is given by the relation,  

          (1.30) 

where θ is the reduced bearing. The signs of ΔL and ΔD will define the quadrant of the closing 
error. 

 
The latitudes and departures are now adjusted by applying the correction to them in such a way 
that the algebraic sum of the latitudes and departures should be equal to zero. Any one of the 
two rules (Bowditch Rules and Transit Rules) may be used for finding the corrections to 
balance the survey: 
 
(1) Bowditch Rule: It is also known as the Compass rule. It is used to adjust the traverse when 
the angular and linear measurements are equally precise. By this rule, the correction in each 
latitude or departure of line is computed as: 
  

Correction to latitude or departure of any side 
= Total error in latitude or departure 

       (1.31)
 

 
(2) Transit Rule: The Transit rule is used to adjust the traverse when the angular measurements 
are more precise than the linear measurements. 
 

(i) Correction to latitude of any side 
  = total error in latitude  

     (1.32)
 

 
(ii) Correction to departure of any side 
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  = total error in departure 

     (1.33)
 

 
1.21.2 Computation of coordinates 
Very popular method of showing the adjustment of closing error as well as computation of 
coordinates is systematically done using Gale’s Traverse Table. 
  
Gale’s Traverse Table:  
The computations for a closed traverse may be made in the following steps and entered in a 
tabular form known as Gale’s Traverse, as shown in Table 1.8. 

(i) Adjust the included angles, if the sum is not equal to (2n-4) x 900, as explained above 
(ii) Calculate the adjusted RB of all traverse liens, as explained above.  
(iii)Compute the latitudes and departures (consecutive coordinates) of traverse lines, as 

explained above.  
(iv) Apply the necessary correction to the latitude to the latitudes, and departures so that the 

sum of the corrected latitudes is zero and sum of corrected departures is equal to zero. 
(v) By knowing the exact coordinates of a traverse point, find the independent coordinates 

of the remaining traverse points from the consecutive coordinates.  
(vi) Plot all the traverse stations on a plan for map preparation. 

 
Table 1.8  Sample Gales traverse table for computation of corrected coordinates 
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