
Design and Analysis of Algorithms, Chennai Mathematical Institute

Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 01

Module - 06

Lecture - 06

So, we argued that we would like to measure efficiency of an algorithm in terms of basic

operations, and we would like to compute the running time of an algorithm in terms of a

function of its input size n, and we also saw that if you go from say n square to n log n

then the size of inputs you can effectively handle becomes dramatically larger. Now,

today we will try to formulate some of these notions a little more clearly.

(Refer Slide Time: 00:27)

So, the first thing is the input size. So, remember that the running time of an algorithm

necessarily depend on the size of the input. So, we want to write the running time as

some function t of n. And the main thing to remember is that not all inputs of size n will

give the same running time. So, there is going to be a notion of worst case estimate

which you will need to explain and justify.

47

(Refer Slide Time: 00:54)

Before we do this let us look at the notion of input size itself - how do we determine the

input size for a given problem? So, the input size more or less represents the amount of

space it takes to write down the distribution of the problem or becomes a natural

parameter of the problem. So, for instance, when we are sorting arrays what really

matters is how many objects there are to solve, so we have to move them around and

rearrange them. So, the size of an array is quite a natural notion of input size for a sorting

problem.

On the other hand, if you had trying to do something like rearranging elements or take

say we have some items which we need to load into a container and we are looking for a

optimum subset load in terms of weight or volume then the number of objects would be a

natural input parameter. We saw in one of the early lectures an example of air travel

where we constructed a graph of an airline route map where the nodes where the cities

and the edges where the flights.

And we argued that both the number of cities and the number of flights will have an

impact on any analysis we need to do. So, this is a general property of all graphs; if we

have a graph then both the number of nodes or vertices and the number of edges will

determine the input size.

48

(Refer Slide Time: 02:14)

Now, there is an important class of problems where we have to be a little bit careful

about how we talk about input size, and these are problems involving numbers. Suppose

we were to write an algorithm for primality checking whether the given number is prime.

Now, how should we think of the size of the input? For instance, suppose we ask it to

solve the question for say 5003 and then for 50003 then 50003 is roughly 10 times 5003.

So, would we expect the time to group proportional to 10. So, should the magnitude of n

actually p ignores the input size.

Now, it is quite obvious when we do arithmetic by hand, the kind of arithmetic we do in

school, that we do not go by magnitude, we go by the number of digits. When we do

arithmetic such as addition with carry we right down the numbers in columns then we

atom them column by column. So, the number of digits determines how many columns

we have to add. The same is true with subtraction or addition or multiplication or long

division and so on.

So, clearly, it is a number of digits which matters. And the number of digits is actually

the same as the log. If you have numbers written in base 10 then if we have a 6 digit

number its log is going to be 5.something. And we go to log 6, we will have a 7 digit

number and so on. So, the number of digits is directly proportional to the log, so we can

think of the log of the number as the input size. So, this is a special case. So, for

arithmetic function with log in numbers, it is not the number itself which is the input

size, but the size of the number as expressed in how many digits with excess to write

49

down the number.

(Refer Slide Time: 04:00)

Now, the other thing, we mentioned this that we are going to ignore constants. We are

going to look at these functions in terms of orders or magnitude, thus the function grow

as n, n square, n cube, and so on. So, one justification for this is because we are ignoring

the notion of a basic operation or rather we are being a bit vague about it.

(Refer Slide Time: 04:20)

So, let us look at an example. So, supposing, we would originally consider our basic

operations to be assignment to variables or comparisons between variables. Now, we

50

decide that we will include swapping 2 values exchanging the contents of x and y as a

basic operation. Now, one of the first things we learn in programming is that in order to

do this we need to go via temporary variables. So, in order to exchange x and y in most

programming languages you have to first say x in temporary variable then copy y to x

and then this store y from the temporary variable; this takes 3 assignments.

So, if we take swap as a basic operation in our language as compared to a calculation

where we only look at assignments we are going to collapse 3 assignments into 1 basic

operation. So, there is the factor of 3 differences between how we would account for the

operation if we account for swap as a single operation. So, in order to get away from

worrying about these factors of 3 and 2 and so on, one important way to do this is to just

ignore these constants when we are doing this calculation. So, that is in other motivation

for only looking at orders of magnitude.

(Refer Slide Time: 05:30)

So, let us come back to this notion of worst case. So, as we said we are really looking at

all inputs of size n; and, among these inputs which inputs drive the algorithm to take the

maximum amount of time. So, let us look at a simple algorithm here which is looking for

a value k in an unsorted array A. So, in an unsorted array we have no idea where the

value k can be. So, the only thing we can do is swap the beginning to i.

So, we start by initializing this index i which is in position to 0, and then we have a loop

which says, so along as we have not found the array element. So, along as a i is not k we

51

increment, right, we move to the next element. So, this is the loop, and when we exit this

loop there are 1 or 2 possibilities, either we have found the element in which case i is less

than 1, or we have not found the element in this case i is become n.

So, we check whether i is less than n; if i is less than n then we have found it, and if i is

bigger than n which means it is not found. So, this is the simple algorithm. So, now, in

this algorithm the bottle neck is this loop, right. So, this can take upto n iterations. Now,

when will take n iterations? That is the worst case, right.

(Refer Slide Time: 06:47)

So, the worst case in this particular algorithm is it must go the end either if the last

element is k, or more generally if there is no copy of k in the array. If there is no k in the

array we have to scan all the elements to determine that k does not exist. So, this

becomes our worst case input. So, it is important to be able to look at an algorithm and

try to reconstruct what input to drive it to take the maximum amount of time. So, in this

simple case, this simple example we can see that the case which forces us to execute the

entire loop can be generated by choosing a value of k which is not in the array A.

And in this case, therefore the worst case is proportional to the size of the array n. The

crucial thing to remember is that in order to determine which is the worst case input, we

have to understand the algorithm and look at it. We cannot just blindly determine what is

the worst case without knowing the problematic act. To different algorithms we have to

come up with different worst cases depending on what the algorithm is supposed to do,

52

and how the algorithm is constructing. So, the worst case input is the function of the

algorithm itself.

(Refer Slide Time: 07:55)

Now, we could look at a different measure, right. So, supposing we do not look at the

worst case, we say, look at the average case, right. So, look at the all possible inputs and

then try to see how much time it takes when each of the inputs are somehow average in

time. Now, mathematically in order to compute this kind of an average we need to have a

good way of estimating what are all the possible inputs to a problem. So, although this

sounds like a very attractive notion, in many problems is very difficult.

So, supposing we are doing the airline route problem, how do we consider this space of

all possible route maps, and what is a typical route map, and so on. So, what are we

going to average over are all this inputs equally likely, so we need look at probabilities.

And it is very often very difficult to estimate the probabilities of different types of inputs.

So, though it would make more sense from the point of view of the behavior of the

algorithm in practical situations look at the average case that is how does it behave over

a space of inputs. In practice, it is very hard to do this because we cannot really quantify

this space of possible inputs and assign them with meaningful probabilities.

53

(Refer Slide Time: 09:09)

To summarize, we look at worst case even though it could be unrealistic because the

average case is hard if not impossible to compute. There are very limited situations

where it is possible to do an average case analysis, but these are very rare. So, the good

thing about a worst case analysis is if we can do a good upper bound, so in that, even in

the worst case if algorithm performs efficiently then we have got a useful piece of

information about the algorithm; that is this always works well.

On the other hand, if we find out that this algorithm has a bad worst case upper bound we

may have to look a little further, how rare is this worst case, does this often arise in

practice, what type of inputs are worst case, are they inputs that we would typically see,

are there any simplifying assumptions that we can make which will rule out these worst

cases and so on.

So, though worst case analysis is not a perfect way of doing it, it is something which is

mathematically practical, it is something that we can kind of hope to compute. So, that is

one good reason for doing it so that we actually come up with a quantitative estimate.

And secondly, it does give us some useful information; even though in some situations it

not be, may not be the most realistic situations that we have likely to come across in

practice.

54

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

