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So, we argued that we would like to measure efficiency of an algorithm in terms of basic 

operations, and we would like to compute the running time of an algorithm in terms of a 

function of its input size n, and we also saw that if you go from say n square to n log n 

then the size of inputs you can effectively handle becomes dramatically larger. Now, 

today we will try to formulate some of these notions a little more clearly.  

(Refer Slide Time: 00:27) 

So, the first thing is the input size. So, remember that the running time of an algorithm 

necessarily depend on the size of the input. So, we want to write the running time as 

some function t of n. And the main thing to remember is that not all inputs of size n will 

give the same running time. So, there is going to be a notion of worst case estimate 

which you will need to explain and justify.  
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Before we do this let us look at the notion of input size itself - how do we determine the 

input size for a given problem? So, the input size more or less represents the amount of 

space it takes to write down the distribution of the problem or becomes a natural 

parameter of the problem. So, for instance, when we are sorting arrays what really 

matters is how many objects there are to solve, so we have to move them around and 

rearrange them. So, the size of an array is quite a natural notion of input size for a sorting 

problem. 

On the other hand, if you had trying to do something like rearranging elements or take 

say we have some items which we need to load into a container and we are looking for a 

optimum subset load in terms of weight or volume then the number of objects would be a 

natural input parameter. We saw in one of the early lectures an example of air travel 

where we constructed a graph of an airline route map where the nodes where the cities 

and the edges where the flights.  

And we argued that both the number of cities and the number of flights will have an 

impact on any analysis we need to do. So, this is a general property of all graphs; if we 

have a graph then both the number of nodes or vertices and the number of edges will 

determine the input size. 
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Now, there is an important class of problems where we have to be a little bit careful 

about how we talk about input size, and these are problems involving numbers. Suppose 

we were to write an algorithm for primality checking whether the given number is prime. 

Now, how should we think of the size of the input? For instance, suppose we ask it to 

solve the question for say 5003 and then for 50003 then 50003 is roughly 10 times 5003. 

So, would we expect the time to group proportional to 10. So, should the magnitude of n 

actually p ignores the input size. 

Now, it is quite obvious when we do arithmetic by hand, the kind of arithmetic we do in 

school, that we do not go by magnitude, we go by the number of digits. When we do 

arithmetic such as addition with carry we right down the numbers in columns then we 

atom them column by column. So, the number of digits determines how many columns 

we have to add. The same is true with subtraction or addition or multiplication or long 

division and so on.  

So, clearly, it is a number of digits which matters. And the number of digits is actually 

the same as the log. If you have numbers written in base 10 then if we have a 6 digit 

number its log is going to be 5.something. And we go to log 6, we will have a 7 digit 

number and so on. So, the number of digits is directly proportional to the log, so we can 

think of the log of the number as the input size. So, this is a special case. So, for 

arithmetic function with log in numbers, it is not the number itself which is the input 

size, but the size of the number as expressed in how many digits with excess to write 
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down the number.  

(Refer Slide Time: 04:00) 

 

Now, the other thing, we mentioned this that we are going to ignore constants. We are 

going to look at these functions in terms of orders or magnitude, thus the function grow 

as n, n square, n cube, and so on. So, one justification for this is because we are ignoring 

the notion of a basic operation or rather we are being a bit vague about it.  

(Refer Slide Time: 04:20) 

 

So, let us look at an example. So, supposing, we would originally consider our basic 

operations to be assignment to variables or comparisons between variables. Now, we 
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decide that we will include swapping 2 values exchanging the contents of x and y as a 

basic operation. Now, one of the first things we learn in programming is that in order to 

do this we need to go via temporary variables. So, in order to exchange x and y in most 

programming languages you have to first say x in temporary variable then copy y to x 

and then this store y from the temporary variable; this takes 3 assignments.  

So, if we take swap as a basic operation in our language as compared to a calculation 

where we only look at assignments we are going to collapse 3 assignments into 1 basic 

operation. So, there is the factor of 3 differences between how we would account for the 

operation if we account for swap as a single operation. So, in order to get away from 

worrying about these factors of 3 and 2 and so on, one important way to do this is to just 

ignore these constants when we are doing this calculation. So, that is in other motivation 

for only looking at orders of magnitude.  

(Refer Slide Time: 05:30) 

 

So, let us come back to this notion of worst case. So, as we said we are really looking at 

all inputs of size n; and, among these inputs which inputs drive the algorithm to take the 

maximum amount of time. So, let us look at a simple algorithm here which is looking for 

a value k in an unsorted array A. So, in an unsorted array we have no idea where the 

value k can be. So, the only thing we can do is swap the beginning to i.  

So, we start by initializing this index i which is in position to 0, and then we have a loop 

which says, so along as we have not found the array element. So, along as a i is not k we 
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increment, right, we move to the next element. So, this is the loop, and when we exit this 

loop there are 1 or 2 possibilities, either we have found the element in which case i is less 

than 1, or we have not found the element in this case i is become n.  

So, we check whether i is less than n; if i is less than n then we have found it, and if i is 

bigger than n which means it is not found. So, this is the simple algorithm. So, now, in 

this algorithm the bottle neck is this loop, right. So, this can take upto n iterations. Now, 

when will take n iterations? That is the worst case, right. 

(Refer Slide Time: 06:47) 

 

So, the worst case in this particular algorithm is it must go the end either if the last 

element is k, or more generally if there is no copy of k in the array. If there is no k in the 

array we have to scan all the elements to determine that k does not exist. So, this 

becomes our worst case input. So, it is important to be able to look at an algorithm and 

try to reconstruct what input to drive it to take the maximum amount of time. So, in this 

simple case, this simple example we can see that the case which forces us to execute the 

entire loop can be generated by choosing a value of k which is not in the array A.  

And in this case, therefore the worst case is proportional to the size of the array n. The 

crucial thing to remember is that in order to determine which is the worst case input, we 

have to understand the algorithm and look at it. We cannot just blindly determine what is 

the worst case without knowing the problematic act. To different algorithms we have to 

come up with different worst cases depending on what the algorithm is supposed to do, 
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and how the algorithm is constructing. So, the worst case input is the function of the 

algorithm itself.  

(Refer Slide Time: 07:55) 

 

Now, we could look at a different measure, right. So, supposing we do not look at the 

worst case, we say, look at the average case, right. So, look at the all possible inputs and 

then try to see how much time it takes when each of the inputs are somehow average in 

time. Now, mathematically in order to compute this kind of an average we need to have a 

good way of estimating what are all the possible inputs to a problem. So, although this 

sounds like a very attractive notion, in many problems is very difficult.  

So, supposing we are doing the airline route problem, how do we consider this space of 

all possible route maps, and what is a typical route map, and so on. So, what are we 

going to average over are all this inputs equally likely, so we need look at probabilities. 

And it is very often very difficult to estimate the probabilities of different types of inputs.  

So, though it would make more sense from the point of view of the behavior of the 

algorithm in practical situations look at the average case that is how does it behave over 

a space of inputs. In practice, it is very hard to do this because we cannot really quantify 

this space of possible inputs and assign them with meaningful probabilities. 
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To summarize, we look at worst case even though it could be unrealistic because the 

average case is hard if not impossible to compute. There are very limited situations 

where it is possible to do an average case analysis, but these are very rare. So, the good 

thing about a worst case analysis is if we can do a good upper bound, so in that, even in 

the worst case if algorithm performs efficiently then we have got a useful piece of 

information about the algorithm; that is this always works well.  

On the other hand, if we find out that this algorithm has a bad worst case upper bound we 

may have to look a little further, how rare is this worst case, does this often arise in 

practice, what type of inputs are worst case, are they inputs that we would typically see, 

are there any simplifying assumptions that we can make which will rule out these worst 

cases and so on.  

So, though worst case analysis is not a perfect way of doing it, it is something which is 

mathematically practical, it is something that we can kind of hope to compute. So, that is 

one good reason for doing it so that we actually come up with a quantitative estimate. 

And secondly, it does give us some useful information; even though in some situations it 

not be, may not be the most realistic situations that we have likely to come across in 

practice. 
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