Chapter 5: Complex Exponential Function

Introduction

In civil engineering, the understanding of oscillatory and wave-like phenomena such as vibrations in structures, damping, and alternating currents is vital. These phenomena often involve solutions to differential equations with complex roots, which naturally lead to **complex exponential functions**. This chapter explores the concept, properties, and applications of the **complex exponential function**, which is fundamental in bridging real-world engineering problems with mathematical modeling, particularly in the context of differential equations and signal analysis.

5.1 Euler's Formula

Euler's formula forms the cornerstone of the complex exponential function:

$$e^{ix} = \cos x + i\sin x$$

where:

- i is the imaginary unit, $i^2 = -1$,
- x is a real number (angle in radians).

Interpretation:

Euler's formula expresses a complex exponential as a combination of real trigonometric functions. It geometrically represents a point on the unit circle in the complex plane.

5.2 Complex Exponential Function

The exponential of a complex number z = x + iy is defined as:

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$

Key Points:

- The real part x controls the magnitude (growth/decay),
- The imaginary part y determines the oscillation (angle/rotation),
- This function maps spirals in the complex plane.

5.3 Properties of the Complex Exponential Function

Let $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$:

1. Addition Rule:

$$e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$$

2. Modulus:

$$|e^z| = |e^{x+iy}| = |e^x(\cos y + i\sin y)| = e^x$$

3. Periodicity:

$$e^{z+2\pi i} = e^z$$
 (since $\cos(y+2\pi) = \cos y, \sin(y+2\pi) = \sin y$)

4. Derivative:

$$\frac{d}{dz}e^z = e^z$$

5. Multiplicative Inverse:

$$e^{-z} = \frac{1}{e^z}$$

5.4 Relationship with Trigonometric Functions

By Euler's identity:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

These identities allow us to **transform trigonometric expressions into exponential form**, making them easier to differentiate or integrate in complex analysis or signal processing.

5.5 Polar Form of Complex Numbers and Exponential Notation

Any non-zero complex number $z = r(\cos \theta + i \sin \theta)$ can be written as:

$$z=re^{i\theta}$$

where:

- r = |z| (modulus),
- $\theta = \arg(z)$ (argument or angle).

This form simplifies multiplication, division, and finding powers and roots of complex numbers.

Multiplication:

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Division:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

5.6 De Moivre's Theorem

For any integer n:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

Using Euler's formula:

$$(e^{i\theta})^n = e^{in\theta}$$

Useful in solving trigonometric equations, computing powers and roots of complex numbers in civil engineering problems involving harmonic motion.

5.7 Application in Solving Linear Differential Equations

Second-order differential equations with complex roots lead to solutions involving the complex exponential function.

Example:

Solve:

$$\frac{d^2y}{dt^2} + 4y = 0$$

Auxiliary equation:

$$r^2 + 4 = 0 \Rightarrow r = \pm 2i$$

General solution:

$$y(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

or

$$y(t) = Ae^{2it} + Be^{-2it}$$

The complex exponential solution can be converted to trigonometric form using Euler's formula, and is widely used in vibration and wave analysis in structural engineering.

5.8 Graphical Representation

Plotting e^{ix} on the complex plane gives a **unit circle**, rotating counterclockwise with increasing x. The exponential spiral e^{x+iy} gives a **logarithmic spiral**, spiraling outwards as x increases.

This has applications in:

- Modeling helical structures (like spiral staircases or springs),
- Analyzing rotating bodies,
- Solving PDEs in cylindrical coordinates.

5.9 Real and Imaginary Parts of e^{ix}

The function e^{ix} can be dissected into its **real and imaginary components**, which are the **cosine** and **sine** functions, respectively:

$$e^{ix} = \cos x + i \sin x$$

So:

• Real Part: $Re(e^{ix}) = \cos x$

• Imaginary Part: $Im(e^{ix}) = \sin x$

This breakdown is not just a theoretical formality—it has applications in **Fourier analysis**, where signals are decomposed into sine and cosine (or exponential) components.

5.10 Periodicity and Rotations in the Complex Plane

Periodicity:

$$e^{i(x+2\pi)} = \cos(x+2\pi) + i\sin(x+2\pi) = \cos x + i\sin x = e^{ix}$$

This confirms the **periodic nature** of the complex exponential function in the imaginary part.

Rotation:

If $z = re^{i\theta}$, then multiplying by $e^{i\phi}$ rotates the point by angle ϕ :

$$z \cdot e^{i\phi} = re^{i(\theta + \phi)}$$

Engineering application: This is analogous to rotating a force vector or stress tensor in mechanics or transforming between coordinate frames.

5.11 Logarithm of a Complex Number

The complex logarithm is defined as the inverse of the complex exponential:

If $z = re^{i\theta}$, then:

$$\ln z = \ln r + i\theta$$

But here, θ is **multi-valued**, since:

$$e^{i\theta} = e^{i(\theta + 2\pi n)}, \quad n \in \mathbb{Z}$$

So the logarithm is a multi-valued function:

$$\ln z = \ln r + i(\theta + 2\pi n)$$

Principal Value:

Log
$$z = \ln r + i\Theta$$
, where $\Theta \in (-\pi, \pi]$

Applications:

- Used in solving equations involving exponential terms.
- Appears in integration in the complex plane.
- Important in **fluid flow problems** involving potential functions.

5.12 Complex Powers and Roots

Given a complex number $z = re^{i\theta}$, we define its **complex power** as:

$$z^n = r^n e^{in\theta}$$

Similarly, the n^{th} roots of a complex number are given by:

$$\sqrt[n]{z} = r^{1/n} e^{i(\theta + 2k\pi)/n}, \quad k = 0, 1, \dots, n-1$$

Geometric Interpretation:

- The n roots lie **evenly spaced** on a circle of radius $r^{1/n}$ in the complex plane.
- They form the vertices of a regular polygon.

Application in Civil Engineering:

- $\bullet~$ Used in the \mathbf{modal} analysis of structures.
- Helps analyze **resonance frequencies** in mechanical systems.
- Relevant in **dynamic response** modeling of damped/undamped systems.

5.13 Damped Harmonic Motion and Complex Exponentials

A general damped oscillation can be modeled using:

$$y(t) = e^{-\alpha t} (A\cos(\omega t) + B\sin(\omega t)) = \operatorname{Re}\left(Ce^{(-\alpha + i\omega)t}\right)$$

Where:

- α controls damping (decay),
- ω is the angular frequency,
- ullet C is a complex constant.

This shows how complex exponentials **naturally arise** in second-order differential equations related to:

• Seismic vibrations in buildings,

- Suspension bridges,
- Structural response to dynamic loads.

5.14 Fourier Series and the Role of e^{inx}

The **Fourier Series** expresses a periodic function f(x) as a sum of sines and cosines or complex exponentials:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

Where c_n are Fourier coefficients.

This is widely used in:

- Signal processing,
- Structural vibration analysis,
- Load modeling over time in civil engineering simulations.

5.15 Visualizing Complex Exponentials Using Argand Diagrams

In an Argand diagram, the complex exponential e^{ix} traces the unit circle.

For a general complex exponential $z = e^{x+iy}$:

- x controls the **radius** (scaling),
- y controls the **angle** (rotation).

This is crucial in:

- Simulating rotating systems,
- Understanding wave propagation,
- Representing **phasors** in alternating current analysis.

5.16 Engineering Use Cases Recap

Use Case	Description
Vibration Analysis	$e^{i\omega t}$ form for modeling undamped/damped oscillations
Structural Dynamics	Solutions to beam vibrations and mass-spring-damper systems

Use Case	Description
AC Circuit Theory	Use of complex exponential for voltages and currents
Rotational Dynamics	Representation of rotation in 2D and 3D
Seismic Modeling	Time-dependent loads via Fourier components
Signal Transmission	Encoding and decoding signals in structures (e.g. bridge health monitoring)

Exercises

- 1. Show that $e^{i\pi} + 1 = 0$ using Euler's formula.

- Show that e + 1 = 0 using Euler's formula.
 Express cos(3x) in terms of exponential functions.
 Solve d²y/dx² + 9y = 0 using complex exponentials.
 Find all cube roots of 8(cos π + i sin π).
 If z = 5e^{iπ/4}, find z³ and express the answer in Cartesian form.