
Chapter 5: Complex Exponential Function

Introduction
In civil engineering, the understanding of oscillatory and wave-like phenomena
such as vibrations in structures, damping, and alternating currents is vital.
These phenomena often involve solutions to differential equations with complex
roots, which naturally lead to complex exponential functions. This chapter
explores the concept, properties, and applications of the complex exponential
function, which is fundamental in bridging real-world engineering problems
with mathematical modeling, particularly in the context of differential equations
and signal analysis.

5.1 Euler’s Formula
Euler's formula forms the cornerstone of the complex exponential function:

eix = cos x + i sin x

where:

• i is the imaginary unit, i2 = −1,
• x is a real number (angle in radians).

Interpretation:

Euler's formula expresses a complex exponential as a combination of real trigono-
metric functions. It geometrically represents a point on the unit circle in the
complex plane.

5.2 Complex Exponential Function
The exponential of a complex number z = x + iy is defined as:

ez = ex+iy = ex(cos y + i sin y)

Key Points:

• The real part x controls the magnitude (growth/decay),
• The imaginary part y determines the oscillation (angle/rotation),
• This function maps spirals in the complex plane.
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5.3 Properties of the Complex Exponential Function
Let z1 = x1 + iy1, z2 = x2 + iy2:

1. Addition Rule:

ez1+z2 = ez1 · ez2

2. Modulus:

|ez| = |ex+iy| = |ex(cos y + i sin y)| = ex

3. Periodicity:

ez+2πi = ez (since cos(y + 2π) = cos y, sin(y + 2π) = sin y)

4. Derivative:

d

dz
ez = ez

5. Multiplicative Inverse:

e−z = 1
ez

5.4 Relationship with Trigonometric Functions
By Euler’s identity:

cos x = eix + e−ix

2 , sin x = eix − e−ix

2i

These identities allow us to transform trigonometric expressions into
exponential form, making them easier to differentiate or integrate in complex
analysis or signal processing.
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5.5 Polar Form of Complex Numbers and Exponential No-
tation
Any non-zero complex number z = r(cos θ + i sin θ) can be written as:

z = reiθ

where:

• r = |z| (modulus),
• θ = arg(z) (argument or angle).

This form simplifies multiplication, division, and finding powers and roots of
complex numbers.

Multiplication:

z1z2 = r1r2ei(θ1+θ2)

Division:
z1

z2
= r1

r2
ei(θ1−θ2)

5.6 De Moivre’s Theorem
For any integer n:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

Using Euler’s formula:

(eiθ)n = einθ

Useful in solving trigonometric equations, computing powers and roots of complex
numbers in civil engineering problems involving harmonic motion.

5.7 Application in Solving Linear Differential Equations
Second-order differential equations with complex roots lead to solutions involving
the complex exponential function.
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Example:

Solve:

d2y

dt2 + 4y = 0

Auxiliary equation:

r2 + 4 = 0 ⇒ r = ±2i

General solution:

y(t) = C1 cos(2t) + C2 sin(2t)

or

y(t) = Ae2it + Be−2it

The complex exponential solution can be converted to trigonometric form using
Euler’s formula, and is widely used in vibration and wave analysis in structural
engineering.

5.8 Graphical Representation
Plotting eix on the complex plane gives a unit circle, rotating counterclockwise
with increasing x. The exponential spiral ex+iy gives a logarithmic spiral,
spiraling outwards as x increases.

This has applications in:

• Modeling helical structures (like spiral staircases or springs),
• Analyzing rotating bodies,
• Solving PDEs in cylindrical coordinates.

5.9 Real and Imaginary Parts of eix

The function eix can be dissected into its real and imaginary components,
which are the cosine and sine functions, respectively:

eix = cos x + i sin x

So:
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• Real Part: Re(eix) = cos x
• Imaginary Part: Im(eix) = sin x

This breakdown is not just a theoretical formality—it has applications in Fourier
analysis, where signals are decomposed into sine and cosine (or exponential)
components.

5.10 Periodicity and Rotations in the Complex Plane
Periodicity:

ei(x+2π) = cos(x + 2π) + i sin(x + 2π) = cos x + i sin x = eix

This confirms the periodic nature of the complex exponential function in the
imaginary part.

Rotation:

If z = reiθ, then multiplying by eiϕ rotates the point by angle ϕ:

z · eiϕ = rei(θ+ϕ)

Engineering application: This is analogous to rotating a force vector or stress
tensor in mechanics or transforming between coordinate frames.

5.11 Logarithm of a Complex Number
The complex logarithm is defined as the inverse of the complex exponential:

If z = reiθ, then:

ln z = ln r + iθ

But here, θ is multi-valued, since:

eiθ = ei(θ+2πn), n ∈ Z

So the logarithm is a multi-valued function:

ln z = ln r + i(θ + 2πn)

Principal Value:

Log z = ln r + iΘ, where Θ ∈ (−π, π]
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Applications:

• Used in solving equations involving exponential terms.
• Appears in integration in the complex plane.
• Important in fluid flow problems involving potential functions.

5.12 Complex Powers and Roots
Given a complex number z = reiθ, we define its complex power as:

zn = rneinθ

Similarly, the nth roots of a complex number are given by:

n
√

z = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n − 1

Geometric Interpretation:

• The n roots lie evenly spaced on a circle of radius r1/n in the complex
plane.

• They form the vertices of a regular polygon.

Application in Civil Engineering:

• Used in the modal analysis of structures.
• Helps analyze resonance frequencies in mechanical systems.
• Relevant in dynamic response modeling of damped/undamped systems.

5.13 Damped Harmonic Motion and Complex Exponentials
A general damped oscillation can be modeled using:

y(t) = e−αt(A cos(ωt) + B sin(ωt)) = Re
(

Ce(−α+iω)t
)

Where:

• α controls damping (decay),
• ω is the angular frequency,
• C is a complex constant.

This shows how complex exponentials naturally arise in second-order differential
equations related to:

• Seismic vibrations in buildings,
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• Suspension bridges,
• Structural response to dynamic loads.

5.14 Fourier Series and the Role of einx

The Fourier Series expresses a periodic function f(x) as a sum of sines and
cosines or complex exponentials:

f(x) =
∞∑

n=−∞
cneinx

Where cn are Fourier coefficients.

This is widely used in:

• Signal processing,
• Structural vibration analysis,
• Load modeling over time in civil engineering simulations.

5.15 Visualizing Complex Exponentials Using Argand Dia-
grams
In an Argand diagram, the complex exponential eix traces the unit circle.

For a general complex exponential z = ex+iy:

• x controls the radius (scaling),
• y controls the angle (rotation).

This is crucial in:

• Simulating rotating systems,
• Understanding wave propagation,
• Representing phasors in alternating current analysis.

5.16 Engineering Use Cases Recap

Use Case Description
Vibration Analysis eiωt form for modeling

undamped/damped oscillations
Structural Dynamics Solutions to beam vibrations and

mass-spring-damper systems
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Use Case Description
AC Circuit Theory Use of complex exponential for

voltages and currents
Rotational Dynamics Representation of rotation in 2D and

3D
Seismic Modeling Time-dependent loads via Fourier

components
Signal Transmission Encoding and decoding signals in

structures (e.g. bridge health
monitoring)

Exercises
1. Show that eiπ + 1 = 0 using Euler’s formula.
2. Express cos(3x) in terms of exponential functions.
3. Solve d2y

dx2 + 9y = 0 using complex exponentials.
4. Find all cube roots of 8(cos π + i sin π).
5. If z = 5ei π

4 , find z3 and express the answer in Cartesian form.
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