Chapter 7

ARCHES and CURVED
STRUCTURES

1 This chapter will concentrate on the analysis of arches.

> The concepts used are identical to the ones previously seen, however the major (and only)
difference is that equations will be written in polar coordinates.

3 Like cables, arches can be used to reduce the bending moment in long span structures. Es-
sentially, an arch can be considered as an inverted cable, and is transmits the load primarily
through axial compression, but can also resist flexure through its flexural rigidity.

4 A parabolic arch uniformly loaded will be loaded in compression only.

5 A semi-circular arch unifirmly loaded will have some flexural stresses in addition to the
compressive ones.

7.1 Arches

6 In order to optimize dead-load efficiency, long span structures should have their shapes ap-
proximate the coresponding moment diagram, hence an arch, suspended cable, or tendon con-
figuration in a prestressed concrete beam all are nearly parabolic, Fig. 7.1.

7 Long span structures can be built using flat construction such as girders or trusses. However,
for spans in excess of 100 ft, it is often more economical to build a curved structure such as an
arch, suspended cable or thin shells.

s Since the dawn of history, mankind has tried to span distances using arch construction.
Essentially this was because an arch required materials to resist compression only (such as
stone, masonary, bricks), and labour was not an issue.

9 The basic issues of static in arch design are illustrated in Fig. 7.2 where the vertical load is per

unit horizontal projection (such as an external load but not a self-weight). Due to symmetry,

the vertical reaction is simply V = wTL, and there is no shear across the midspan of the arch

(nor a moment). Taking moment about the crown,

M=Hh-20 (5= 7) =0 (7.1)
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Solving for H

wl?

H=———
8h

(7.2)

We recall that a similar equation was derived for arches., and H is analogous to the C' — T
forces in a beam, and h is the overall height of the arch, Since h is much larger than d, H will
be much smaller than C' — T in a beam.

10 Since equilibrium requires H to remain constant across thee arch, a parabolic curve would
theoretically result in no moment on the arch section.

11 Three-hinged arches are statically determinate structures which shape can acomodate sup-
port settlements and thermal expansion without secondary internal stresses. They are also easy
to analyse through statics.

12 An arch carries the vertical load across the span through a combination of axial forces and
flexural ones. A well dimensioned arch will have a small to negligible moment, and relatively
high normal compressive stresses.

13 An arch is far more efficient than a beam, and possibly more economical and aesthetic than
a truss in carrying loads over long spans.

14 If the arch has only two hinges, Fig. 7.3, or if it has no hinges, then bending moments may
exist either at the crown or at the supports or at both places.
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Figure 7.3: Two Hinged Arch, (Lin and Stotesbury 1981)

15 Since H varies inversely to the rise h, it is obvious that one should use as high a rise as
possible. For a combination of aesthetic and practical considerations, a span/rise ratio ranging
from 5 to 8 or perhaps as much as 12, is frequently used. However, as the ratio goes higher, we
may have buckling problems, and the section would then have a higher section depth, and the
arch advantage diminishes.

16 In a parabolic arch subjected to a uniform horizontal load there is no moment. However, in
practice an arch is not subjected to uniform horizontal load. First, the depth (and thus the
weight) of an arch is not usually constant, then due to the inclination of the arch the actual
self weight is not constant. Finally, live loads may act on portion of the arch, thus the line of
action will not necessarily follow the arch centroid. This last effect can be neglected if the live
load is small in comparison with the dead load.

Victor Saouma Structural Engineering



7.1 Arches 135

Solving those four equations simultaneously we have:

140 2625 0 07 ( Ray 2,900 Ra, 15.1 k
0 1 0 1|)Ra |_] 0 Raz | ) 208k
10 10[)YRBey () 50 (7)) Bey () 349k (74)
80 60 0 0] | Res 3,000 Rea 50.2 k

We can check our results by considering the summation with respect to b from the right:
(+9)BMPE = 0; —(20)(20) — (50.2)(33.75) + (34.9)(60) = 04/ (7.5)

B Example 7-2: Semi-Circular Arch, (Gerstle 1974)

Determine the reactions of the three hinged statically determined semi-circular arch under
its own dead weight w (per unit arc length s, where ds = rdf). 7.6

dP=wRd6

Figure 7.6: Semi-Circular three hinged arch

Solution:

I Reactions The reactions can be determined by integrating the load over the entire struc-
ture

1. Vertical Reaction is determined first:

(+9)XMy = 0;—(Cy)(2R) +/ wRd9 R( 1+cos€) 0 (7.6-a)
moment arm
=Cy = w_R - (14 cosf)df = w—R[H—sine] 9=1
2 J ¢=0 2
wR

= T[(’ﬂ' —sinm) — (0 —sin0)]

= |JwR (7.6-b)

2. Horizontal Reactions are determined next

(+9)XMp = 0;—(Cy)(R) + (Cy)(R) — /z_f wRdf) Rcos =0 (7.7-a)

dP moment arm

Victor Saouma Structural Engineering
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