
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 03

Lecture - 28

All-pairs Shortest Paths

Let us now turn our attention to the All-pairs Shortest Paths problems, where we try to

find the paths, shortest paths between every pair of vertices in a graph.

(Refer Slide Time: 00:10)

So, recall that we are working with weighted graphs, we allow negative edge weights,

but not negative cycles, because with negative cycles our shortest path is not well

defined, with negative weights, it is well defined. We saw that the Bellman-Ford

algorithm allows us to generalized Dijsktra's algorithm and compute single source

shortest paths in weighted graphs with negative weight, but without negative cycles.

So, now, we want to further generalize this and compute not just the shortest paths from

a single source, but the shortest path between every pair of vertices. So, as we explained

that the beginning an example would be, if you trying to run a travel website or an airline

website and somebody wants to find the minimum cost or the minimum time flight or

train between any pair of sides.

295

(Refer Slide Time: 00:54)

So, you made the following observation of shortest paths that the shortest path even in

the presence of negative weights will never loop, because we can always remove the

loop without increasing the length of the path. So, therefore a shortest path never visits

the same vertex twice and has length at most n minus 1. So, we exploited this algorithm

in one way for Bellman-Ford and we will find that we can use it now for an inductive

algorithm for all pairs shortest path. So, we will come up with an inductive solution of

how to build up the shortest paths.

(Refer Slide Time: 01:30)

So, we are basically going to build up shortest path in terms of vaguely by length, but

most specifically what vertices we allowed in between. So, the simplest shortest path you

296

can imagine in a pair of vertices it is just a single edge. So, we have single edge and this

happens to be the shortest path, then you are in good shape. But, in general this may not

be the shortest path, because even if there is such an edge, there may be a way, because

of negative, because of edge way, even because of negative edge ways are reaching from

i to j by our longer path of edges, but to the shorter overall cost.

But, what we do know, because of the characterization of shortest path is that this path

from i to j goes through some intermediate vertices all of which are different from each

other, no vertex is visited twice. And secondly, none of these vertices either i or j, there is

no point in coming back to i and then going to j, so there is no route anywhere in this

path. So, what we will do for this inductive thing is to restrict, what can happen in

between i and j, what are the vertices that are allowed and we will gradually increase the

set. If we allow any vertices, then of course, we will get arbitrary shortest paths.

(Refer Slide Time: 02:40)

So, recall that vertices are numbered 1 to n, so we will compute a quantity W k of i j to

be the weight of the shortest path from i to j, where we restrict the vertices that can be

used go from i to j to be between 1 and k. In other words, we have this set of vertices V,

so we cut it off saying we have 1 to k and we have k plus 1 to n, we say that only these

vertices can be used in the path.

Now, the end points themselves may not be, need not be, but at the point is that in the

end point is outside, then it can still, so I could have a 1 vertex here and then it could

have a path which go like this and then come back. So, only says is that the intermediate

297

vertices, so when I start with i and go to j, what happens in between lies in this set 1 to k.

So, in particular if k is 0, because our numbering is 1 to n, it says that the vertices that

can appear cannot be include 1.

So, in other words, if I have W 0, then it says all of the vertices 1 to n cannot appear on

the paths, so the only way that we can 3 such a shortest paths is to the direct edge. So, W

0, the base case of this inductive definition says that the shortest paths between i and j

which exclude all vertices from 1 to n are of the form edges between i and j.

(Refer Slide Time: 04:07)

So, now since this is an inductive definition, what we have to say is, supposing we know

the shortest paths which use 1 to k minus 1, then how do I compute the shortest paths

reduce 1 to k. So, we know among all the paths which use at most 1 to k minus 1, what is

the shortest path from i to j, how do we now compute, if we allow vertex k also to be

used, how do you compute, what do be the shortest path from i to j.

So, there are two cases, the first case is this is an extra vertex case not useful, the shortest

path even if I include k does not use vertex k, it is enough to use 1 to k minus 1. In this

case the shortest distance from W i to j using 1 to k is the same as the shortest distance

from i to j using k minus 1. So, I can say W k of i j is the same as W k minus 1 i j. On the

other hand, it could be that using k does give us some non trivial improvement.

So, we have now some path which goes from i to j and on the way it visits k. So, if it

visits k on the way, then we can break it up as a path from i to k and a path from k to j.

But, notice that we have already said that this vertex k or any vertex for that matter

298

which appears in this path, if it is the shortest path appears only once. So, if cut k appears

here, there is no k between i and k and there is no k between k and j. This means that I

have a path from i to k already which goes through 1 to k minus 1 and I have a path from

k to j already which goes 1 to k minus 1 and I am combining these two.

So, I can break up the path, it is the path from i to k and the path k to j, each of which

uses only 1 to k minus 1. And what is the cost of that path, well, we inductively know

that we have the cost of the best path from i to k using only 1 to k minus 1 inductive k

minus 1, you also have the best path from k to j in our matrix W k minus 1. So, if I add

these two, this must be the path best way of going i or k.

So, combing the cases, we say that either we do not use k in which case, we take the

value of the old matrix or you do use k and which case we combine two entries going i or

k in the old matrix, we will take the smaller of these two. So, which one of these smaller

will be the correct value of the shortest distance from i to j going through 1 to k.

(Refer Slide Time: 06:27)

So, this gives us an immediate algorithm which is called the Floyd-Warshall algorithm.

So, we start off with matrix representing the function W 0. So, W 0 has entries which are

exactly the edge weight, so there is an edge from i to j, the W 0 i to j says that direct path

of that weight. Because, remember that W 0 cannot go through any intermediate paths

and if there is no edge, since I cannot go through any intermediate vertex, W 0 i j must

be infinity.

Now, for k in 1 to n, I basically repeat this n times, I first allow 1 to be use. So, I

299

compute W 1 and W 0. And how do I do that, I use the update to insert earlier that will

take the minimum of what you already have plus the possibility going through the newly

introduced vertex, then I will allow 1 and 2, then I will allow 1, 2 and 3. And obviously,

if I allow 1, 2, 3 up to n I allow all the vertices to appear in between, W n will now have

the shortest paths with no constraints.

So, I need to do these update exactly n times, so that after n times I capture the shortest

way paths which include any arbitrary combination of vertices on the path.

(Refer Slide Time: 07:37)

So, the actual code is again like Bellman-Ford extremely straight forward. You just have

first initialization which sets every way to infinity and then updates the non trivial

weights for those edges which had the graphs. So, we have keeping track of this function

W 0 of i j by a three dimensional matrix, so i and j represent the two vertices and the 0

represents the iteration number.

So, initially W 0 of i j is either the weight of i j, if there is an edge or it is infinity and that

is what these first two steps handling. And now, we do this ends n times, we do this

iteration, that is we update all the W i j's at level k to be the minimum of the W i j's at

level k minus 1 or the sum of the root. So, implicitly here should have been for ((Refer

Time: 08:33)). So, this is for i n, for i equal to 1 to n, for j equal to 1 to n.

So, we have this update rule and we do these blindly n times and n we claim that the

matrix W in the entry k has got the correct shortest paths for all pairs of vertices.

300

(Refer Slide Time: 08:55)

So, let us look at the same example that we say for Bellman-Ford. So, initially we assign

to each, so W 0 has the edge weight. So, we have an adjacency matrix like representation

in which for instance, we say 1 to 2 there is an edge of weight 10, 7 to 6, there is an edge

of weight minus 1 and so on. So, we just duplicate all of these edges in the matrix and

everything else is left at infinity.

Now, from W 0, we go to W 1 by considering all new paths that we can find by going

from 1, but now notice that this nothing that is coming into 1. So, this is signified to in

fact, that the column 1 has infinity, no edge goes into 1. So, no other vertex can use the

fact that 1 is connected to 2 and 8. So, if you update using update rule, you find that the

W 1 is actually equal to W 0 nothing changes, because allowing 1 to be use in between

two vertices does not help us.

It is not in between any two vertices, I cannot go from anywhere to 1 and then from 1 to

that vertex. On the other hand, if I can now include 2, then I can do interesting things, I

can go for example, from 1 to 2 to 6 and I can go from 7 to 1 to 6. So, align 2 and 1 as an

intermediate vertex, so 1 does not help right now, but allowing 2 gives me something.

So, if I now look at W 1, I do not need W 0 anymore, whenever W 1, then I will whether

said be able to explore paths through 2. So, in particular 2 goes to 6, anything pointing

into 2, so 7 to 2 to 6, 3 to 2 to 6 and 1 to 2 to 6, these three entries will get updated.

301

(Refer Slide Time: 10:13)

So, 1 to 2 to 6, so I get a new entry 12, 3 to 2 to 6, so I get new entry 3 and 7 to 2 to 6, I

get minus 4 plus 2 minus 3. Now from W 2, likewise I will compute W 3, again compute

W 3 will come back to this later, I do not need W 1, I only need W 2. So, I can throw

way W 1 from now, I am just look at W 2. So, now I am allowing myself to use 1, 2, 3,

so I will look for things at go throw 3.

So, for instance now throw 3, I can go from 6 to 4, for example, so I will get entries of

that form. So, I can go from 6 to 4 with new thing, I can also go from 6 to 2. So, now, I

have a new way are going from 6 to 2, so that also get separated. And interestingly, I also

discovered that, there is now our path from 6 to 6, because earlier I did not know that,

but now that, I am allow to go throw both 2 and 3, I can go from 6 to 6, I have

discovered this loop, which has a positive weight.

If did not have a positive weight viewer in trouble, because this is did not have a well

defined solution and so on. So, you can just keep on doing this, we will not update up to

W, if you now go all the way and do up to W 8, then after you allow everything from 1 to

8 to be an intermediate thing, this matrix will actually compute all pair shortest path

between any i j.

302

(Refer Slide Time: 11:52)

So, this algorithm it is very easy to see that the complexity is order n cube, because you

have n iteration and an each iteration we are updating the entire matrix which has n

square entries. This is not much you can do to improve this, because it is an adjacency

matrix base algorithm, we cannot move to list, we do not have to compute any minimum

maximum.

So, nothing much you can do it is, it is n cube algorithm, notice that, it is sort of sounds

as it trivial case, the Bellman-Ford, because once you computed all pairs, so this

generalizes as the solution Bellman-Ford. Because, in particular, if you now want all the

shortest path from a given S, everything you just have to look up that particular row in

the Floyd Warshall matrix.

You look at the row S and all the entries with say the shortest path from S, but remember

that in that particular case, if I only wanted from S Bellman-Ford with clever adjacency

list representation would take order m n, but it is here this will require order n cube. So,

this is the generalize Bellman-Ford instance, you get same answer that you would have

call from Bellman-Ford and more.

But, you are always spending n cube time, there is if you had very few edges in your

graph which is typically the case Bellman-Ford in more efficient. So, if you are using, if

you only want to do single source shortest path, you should not typically jump directly to

Floyd Warshall, you should probably do Bellman-Ford instant. About space complexity,

so we said that we are going to represent each 0 W 0, W 1 etcetera is one coordinate.

303

So, we have basically have n times, n times n, because we have n times n is the actual

matrix, we have n of these matrixes, because we have level 0, level 1 and level k or level

n. But, we say that in our work out example, that when you need to compute the level 1,

we only need level 0, then we can throw a level 0. When, we need to compute level 2,

you need only level 1.

So, in some sense, you can keep only 2 copies and keep switching back and fold, you

over write the zeroth level as second level, you over write the first level as third level and

so on. So, we need only 2 slices of l, call it of this three dimensional matrix at a time. So,

you can just keep oscillating between these 2 slices overall here 2 n squared space. So,

we known normally worry about space.

But, just an observation that in this particular thing, you do not really need to have the n

cubed array, you can have 2 n squared array or a n squared array with that two indices.

And keep oscillating between the 2 and get the same effect, because you only need one

copy to compute the other copy.

(Refer Slide Time: 14:20)

So, let us conclude this discussion in some historical remarks. So, Floyd Warshall as you

can see come the hyphenation, as the hybrid name for this algorithm and actually there

are two distinct algorithms which comprise it, which have a very similar structure. So,

the original algorithm which are proposed by Warshall is for what is called transitive

closure. So, transitive closure is exactly the same as computing the path from edge

relation.

304

So, supposing you have a relationship like friend, so you know among a group of people,

who is a direct friend of whom, then you might want to ask, who knows indirectly. So, I

know somebody indirectly, if I have a friend, who knows that person or if I have a friend

who as the friend knows that person and so on. So, knowing somebody indirectly is that

transitive closure of the friend relation. In the same way in a general, I mean, so in every

graph, if you put the friend, whatever relation, we want as the edge relation, the transitive

closure is the path relation.

So, you have an adjacency matrix which represents the edges, you want to compute a

path matrix which represents the paths, which are the pairs of vertices computed by

which are connected by paths. And so, Warshall describe the similar algorithm, what we

wrote now and we will just do it in a little detail in the next couple of slides to do this

compute P from A and what Floyd is observed was you can adapted as same algorithm.

So, if Warshall's algorithm, we only checking is there of path and Floyds algorithm says

that, you can actually adapt it to compute shortest paths.

(Refer Slide Time: 15:50)

So, the idea is very similar to what you have seen for let us go through it quickly. So, we

have an adjacency matrix A, which tells as the edges A i j is 1, if there is an edge and we

want a path matrix P i j is a 1, there is a path from i to j. So, we will again compute

iteratively this quantity P k i j, it says that there is the path and this path uses only the

vertices 1 to k.

So, k plus 1 to n cannot appear in the path and again the n points are not included. So, i

305

and j are arbitrary, it is what is a between i and j which is restricted by this super

celebrity. So, between i and j, you can only seen things from 1 to k. So, as before if you

do P 0, it says nothing can appear, because you could have everything from 1 to n,

therefore, P 0 is just the adjacency matrix.

(Refer Slide Time: 16:43)

So, now we have a very similar update rule, so if I know the paths which can be

discovered using 1 to k minus 1, what are the paths I can discover using 1 to k. So, if

there is a path already without using k, then I can just keep that path. So, we could either

have that P k, I should remember now this is there a path is not the path. So, this is like

an adjacency matrix, there is no weight, it was the 0, 1 matrix or a true false matrix.

So, initially the adjacency matrix as 1 or true, whenever there is an edge, false whenever

there is no edge. So, if I already got an entry true with k minus 1, then I can keep it. The

other hand, maybe I do not have an entry true, after go back k, but one second that needs

there is a path from i to k and there is a path from k to j and here I use only k minus 1

and here I use only k minus 1, because k needs to appear only once.

Just like in a shortest path, if I am just looking for some connectivity, then I do not gain

anything by going back from k to k, because I can this remove that i and j will remain

connected. So, I need to only look for paths which have one copy of every vertex along

them. So, therefore, I can assume there is a path from i to k, which does not use anything

outside want to k minus 1, likewise from k to j.

So, here now instead of min and plus operations, now become or and and, either I want

306

to path from i to k and path from k to j or I want to existing path from i to j, which never

use k at all. So, I have this AND operation for combining these two existing paths should

P and then, I have NOR operation which combines a case 1. So, earlier we had W k

minus 1, i j and then, we add this W k minus 1, i k plus W k minus 1, k j and we took the

min on this.

So, here instead of this plus, we are using AND and instead of using min, we are using

OR, you can see that the algorithm that not exactly the same. But, it is very similar, so

this was the algorithm proposed by Warshall.

(Refer Slide Time: 18:43)

So, you initialize everything to false and then, again you should P for i is equal to 1 to n

for j is equal to 1 to n. So, you initialize all the paths to false, when you set explicitly that

is the zeroth level path at true, if there is an edge. And then, you keep updating the kth

level path the either saying that there was already k minus 1 level path or I can find 2 k

minus 1 level paths were intermediate level k in intermediate vertex k.

So, it is a very similar thing, we just have just these operations of OR and AND, instead

of min and plus. And then, Warshall's algorithm for use transitive closure and Floyd

generalized it would shortest paths and these work in the presence of negative edges, it

does not matter, Floyds algorithm does not care with the edges are negative or positive.

So, long as there are no negative cycles.

307

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

