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Principal planes and Principal stress components
Welcome to Lecture 7! In this lecture, we will learn about the concept of principal stress components

and principal planes.

1 Definition (start time: 00:30)

By now we have learnt that at any point in the body, we have different traction on different planes.
Accordingly, each of the planes also has its own normal component of traction. Among these planes , the
planes on which the normal component of traction becomesmaximum orminimum are called principal

planes and the values of the normal traction on those planes are called principal stress components. The
knowledge of such planes and traction on them is important because one of failure theories says that a
body will fail at a point if the principal stress component reaches a threshold limit. Wheneverwe design

amachine, the knowledge of principal stress components can help us to knowwhether our machine will
be within the limits of failure or not.

2 Finding Principal Planes (start time: 1:56)
Let us suppose we are interested in finding principal planes at a point x in the body as shown in Figure
1. At this point, the normal componentof traction on an arbitrary plane with normal n is given by

σnn= tn · n = (σ n) · n (1)

Figure 1: A body with an arbitrary point x

Our objective is to maximize/minimize it. We know from the first year calculus that once we have a
mathematical formula for a quantity (in terms of variables) to be maximized/minimized, we set the
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derivative of the quantity with respect to all variables to zeroand solve the resulting equations to obtain
the variables. Let us choose a coordinate system(e1,e2,e3) and write formula for σnn in
this coordinate system, i.e.,

(2)

The normal direction (or the three components (n1,n2,n3)) is an unknownhere while the stress matrix is

known.However,we know that anydirection vector has to be a unit vector. Thus, the three components
of nmust satisfy

(3)

Accordingly, not all three components of the direction are independent, e.g., n3 can be calculated from
the other two by setting

(4)

We can substitute the above formula for n3 in equation (2) and thendifferentiate the resultingexpression

for σnn just with respect to n1 and n2. However, the modified expression for σnn becomes a bit complex
differentiating which and further solving the resulting equations is not easy. Another way to
maximize/minimize our function (2) is using the Lagrange multipliers which we now discuss.

2.1 Method of Lagrange Multipliers (start time: 06:33)
Whenevera function is to be maximized/minimized in presence of constraints, one uses the method of

Lagrange multiplier. Basically, the objective function (the function to be minimized/maximized which is
(2) in our case) is augmented by adding/subtracting to it the constraint equation (equation (3) here)
multiplied with an unknownLagrange multiplier. So, the augmented function to beminimized (denoted
by f) nowbecomes a function of the 3 components n1, n2, n3 and the Lagrange multiplier λ as follows:

(5)

The term represents our constraint (equation (3)) and the negative sign in front of
it could very well have been a positive sign. This sign does not make any difference to the overall
formulation. As the function f has to be minimized/maximized, we take its derivative with respect to

each of the unknowns (n1,n2,n3,λ). Letus begin by taking the derivative with respect to n1, i.e.,

(6)
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As σij is a constant here, it does not get differentiated. As n1, n2 and n3 can be taken to be independent
now, we can write

(7)
Now, taking the derivative of f with respect to a general component nk and using equation (7), we get

(8)
Using KroneckerDelta property,we can remove one of the summations from each term and replace the
index of summation by the other index in the KroneckerDelta function, i.e.,

(9)

The first and second terms can be clubbed together because i and j are just dummy variables (variable
of summation) which can be replaced with any other variable. Thus

(10)

Finally, as the stress matrix is symmetric, we get

(11)

Because of writing in a summation form, we have ended up with a simple expression. The summation
expressionalso helped us to take the derivative with respect to a general component nk. Now, we take

the derivative of f with respect to λ, i.e.,

(12)

So, we have 4 equations (3 from equation (11) and 1 from equation (12)) in 4 unknowns (n1,n2,n3,λ).
Equation (11) can be written in a matrix form since for each k, the first term on LHS of (11) can be
obtained by multiplying the kth row of [σ] with the column of n. This leads to

(13)

We immediately see that this is an ’eigenvalue-eigenvectorproblem’with
n : eigenvectorof σ
λ : eigenvalue of σ
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We also know from first year mathematics that if x is an eigenvector, then a scalar multiple of x is also
an eigenvector which can be proved as follows:

Ax = λx⇒ A(bx) = b(Ax) = b(λx) = λ(bx) (14)

Thus both x and bx are the eigenvectorswith the same eigenvalue λ for arbitrary b. Thus, the magniude
of our direction vector n could be anything as far as equation (13) is concernedbutequation (12) restricts
its magnitude to be unity. Thus, equations (12) and (13) together give us a unique solution for the

direction vector n. Also when we consider equation (13), the left hand side is nothing but the column
representationof traction on plane with normal n. Thus, we have:

tn= σ n = λn⇒ σnn = tn · n = λn · n = λ. (15)

From this, we immediately infer that the traction on a plane with normal n (given by (13)) acts along the
direction n itself and hence have no shear component. Summarizing, the principal planes of stress at a

point have their normals equal to eigenvectors of the stress tensor whereas the principal stress
components are given by the eigenvaluesof the stress tensor.

3 Properties of Principal Planes at a point (start time: 28:12)
By definition, principal planes are the planes on which the normal component of traction is
maximized/minimized. We want to know how many such planes exist at any given point in the body. As

stress matrix is a 3 × 3 matrix, it will usually have three eigenvalues and eigenvectors but theyneednot
all be real. However, being symmetric ensures that these eigenvalues and eigenvectors are all real. In
fact, for symmetric matrices, the eigenvectors corresponding to differenteigenvalues are perpendicular
to each other too. To prove this, consider two eigenvectors n1 and n2 of a symmetric tensor σ, with

corresponding eigenvalues λ1 and λ2 (butdistinct). Thus, we have

, (16)

(17)

We now dot the first equation with n2 and the second one with n1. So, we get

(18)
(19)

Let us consider equation (19) now. From the matrix vector operations discussed in the first lecture, we
can take σ to the other side of the dot product by taking its transpose, i.e.,

n2 · (σTn1) = λ2(n2 · n1).
However, the stress tensorbeing symmetric (σ = σT), we get

(20)

(σ n1) · n2 = λ2(n2 ·n1) (21)
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Now,we subtract equation (21) from equation (18) to get

(22)

As λ1 and λ2 are distinct, n1·n2has to be zero or the two normals are perpendicular. We have thus proved
that principal planes at a point are three in number and are perpendicular to each other. It is also easy

to show that if two of the eigenvalues turn out to be the same, then any linear combination of the two
eigenvectors is also an eigenvector. For example:

(23)
. (24)

This implies that if two of the eigenvalues repeat, there exists infinite number of eigenvectors all in the
plane formed by n1 and n2 all of which by definition are also the principal planes but all having the same
eigenvalue or principal stress component.

4 Representation of stress tensor in the coordinate system of its eigenvectors (start time: 34:26)

If there are three distinct eigenvalues for a stress matrix, the corresponding three eigenvectors will all
be perpendicular to each other (we proved it in the previous section). Thus, we can also choose themas
the basis for our coordinate system. Letus representourstress tensor in this coordinate system.We first

need to find traction on the planes with normals along the basis vectors of this coordinate system. As
the basis vectors are themselves eigenvectors of the stress tensor, traction on those planes will simply
be λn (no shear components present). Thus, the corresponding stress matrix will be a diagonalmatrix as

shown below:

(26)
Alternatively, given an arbitrary stressmatrix in some coordinate system,we can always transform it to

become diagonal in the coordinate systemwhose basis vectors are aligned along the eigenvectors of the
stress matrix. In the general case as shown in Figure 2, both normal and shear components of traction
are presenton the faces of a cuboid element at a point in the body.

Summing the above two equations:

σ (αn1 + βn2) = λ (αn1 + βn2)
(25)
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Figure 2: A cuboid elementat a point in the body with all the stress components shown on it

But, if we choose the cuboid element in such a way that its faces are along the eigenvectors of the stress
matrix as shown in Figure 3, its faces will have no shear component because the faces are also the
principal planes. On these planes, we only have normal components (λ1, λ2, λ3) present. So, the faces of

this cuboid have no tendency to shear. They can either get pulled apart or pushed inside dependingon
the sign of λ.

Figure 3: A cuboid elementat a point in the body with its face normals along the eigenvectors of the
stress matrix at that point: all the faces become shear free
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