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Dynamic Programming 

In the next few lectures, we will look at a very powerful technique for designing 

algorithms called dynamic programming. 

(Refer Slide Time: 00:08) 

So, the starting point of dynamic programming is to consider, what we would call 

inductive definitions. Now, there are many very simple functions which we come across 

which are inductive. So, we all know that mathematically n factorial is n times n minus 1 

factorial. So, we can write an inductive definition of factorial is follows. The base case is 

when n is 0 and in this case the factorial is 1, so f of 0 is 1. 

And in general, if we have n greater than 0, then f of n is given by n times f of n minus 1. 

In other words, we express the factorial of n in terms of the same function applied to a 

smaller input, now this kind of inductive definition is not restricted only to numeric 

problems, you can also do it for structural problems. So, for an example in a list or an 

array, you can consider a sub list or a sub array as a smaller problem. 

So, here is a very simple way of describing insertion sort. So, if I want to sort n elements, 

then the way insertion sort does is that of course, there is nothing to sort the base case, 
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then we have done. Otherwise, we look at the rest of the list starting from the second 

element and we recursively sort it and then we insert the first element into the sorted list. 

So, the insertion sort apply to X 1 to X n, requires us to insert the value X 1 in the 

recursively sort to X 2 to X n. So, again we are applying the same function that we are 

trying to define to a smaller input and in the base case, the smallest input namely the 

empty one, we have an answer which is readily available for us. 

(Refer Slide Time: 01:57) 

 

So, one of the attractions are having inductive definitions is that the yield in a very 

natural way recursive programs. So, we do not have to think much, we can almost take 

the inductive definition and directly translated it as a program. So, here is a translation 

for factorial which more or less reflex the structure that we had before, remember that 

the structure that we had before that was f of 0 is equal to 1 and f of n is equal to n times 

f of n minus 1. 

So, we say if n... Now, just to make it little more robust, so that people give, they give 

negative numbers, we get sensible answers, so just checking n equal to 0, you can just 

check for any value 0 or less, we will just return 1. If somebody ask if a factorial of 

minus 7, we just want to return 1. But the expected thing is that they will start with 0 and 

then if they give us a positive number which is bigger than 0, then we will go to the 

recursive keys. 

So, we will compute factorial for n minus 1 multiply by n and then return this answer, 

well. So, there is a very direct one to one correspondence between this inductive 
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definition and the recursive program and that is what makes inductive definitions very 

attractive from the point of view of describing a function. Because, the inductive 

definition can be mathematically justified and then the program is obviously correct; 

obvious in codes, because it follows directly from the recursive of the inductive 

definition. 

(Refer Slide Time: 03:17) 

 

So, what such inductive definitions exploit is what is sometimes called the optimal sub 

structure property. So, what is complicated base means basically is what you expect from 

an inductive definition that is you solve the original problem by combining solution to 

sub problems. So, the solutions to the original problem are derived in terms of solutions 

in the sub problem and in particular to this sub problem is of same type, then it is 

computing the same type of answer. 

Now, in numerical question like factorial, it does not make sense to say something is 

optimal, but for example, when you doing insertion sort and certainly when you sort the 

sub list, the result of that is what you want for that sub list. So, this gives raise to a notion 

of a sub problem. So, factorial of n minus 1 is a factorial sub problem of factorial of n 

obviously, but it is just so happens at factorial of n, only required factorial of n minus 1. 

Now, we could have problems which require more than one immediate is smaller sub 

problem, for instance factorial n minus 2 is also a sub problem, n minus 3 is also a sub 

problem and so on. So, any smaller input can be treated as the sub problem of the 

original thing. Likewise, when we actually do insertions sort, we give it the input X 1 to 
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X n and we ask to sort X 2 to X n. So, this is the sub problem which is directly part of the 

state. 

But, in general one could think of any segment X i to X j to sort as a sub problem of 

sorting, this would happens for a instances something like merge sort or quick sort, 

especially in merge sort. Then, you break up the array into halves and then into quarters 

and so on, so at any given point you are applying the same algorithm to some segment 

from A i to A j. 

(Refer Slide Time: 05:05) 

 

So, now let us look at a problem that we are seen before in the context of greedy 

algorithms. So, we will look at the problem called interval scheduling. So, integrated 

scheduling said that we had a resource which is available over a period of time and now 

people will come and make bookings for these resources. So, somebody may want to 

book it during this segment, somebody else may want to book it in this segment, 

somebody else may wanted it during these segment and so on. 

Now, during these overlapping things, you cannot give the resource to two people, so 

you have given a set of request each for the starting time and an ending time. So, we 

have a start and an end or a finish time and now what you want to do is, decide which of 

these requests you can allocate, so that the maximum number of bookings are actually 

granted. So, the goal is to maximize the number of bookings not the length of the 

bookings, but the number of bookings. 
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So, in this particular case, what happens is that when you honour a booking, now if a 

booking happens to be overlapping with few other bookings, then if I decided to take this 

booking, then this goes away. So, these two bookings which overlapped with it, it can no 

longer be scheduled, because they are conflict with this in sometime interval. So, 

therefore now we have to solve or find a way of allocating the remaining bookings for 

some subset of the problem of the bookings. 

So, each subset of the bookings is a sub problem in this case and the strategy that we saw 

was a greedy one, which said to pick the one which has the earliest finishing time. So, 

among all those bookings which has still available to us to allocate, we pick one in a 

greedy way by just looking at it among all those are remain the earlier finishing time. 

Now, this as we said, when we add, it will eliminate some bookings which are conflict 

that gives us a sub problem and you will solve these sub problem. 
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So, how many sub problems are there? Now, we have N bookings and every possible 

subset of this is a sub problem, so we have an exponential number of sub problems. In 

general, we have any possible subset could be are answer. So, we have to look through 

all these exponential things in principle in order to find the best allocation, the one that 

gives the maximum number of bookings to be satisfied. 

Now, what are greedy strategy does is effectively it cuts down this exponential space in 

to a linear space, because what it does is it pick, so we have initially bookings 1 to N. 

Then, it will pick among these let us we assume that are actually sorted by order of the 

earliest finishing time. So, you will take the first one, then you will rule out of few from 

there. 

And now you will have some remaining and among those we pick the earliest one and 

you will rule out of you more and so on. So, at most you will allocate all N of them, but 

in each time once you rule include 1, you will rule out of few. So, certainly in a linear 

scan, you would look at only that many sub problems. So, you would look only order N 

sub problems and find, what you would claim is an optimal answer. 

And since, you are doing such a drastic deduction from 2 to the N and order N; 

obviously, there is a question to ask whether you overlooked some sub problems 

accidently by not examining them at all. So, you need a proof, so that is why in a greedy 

strategy, you need to prove that what you are doing actually makes the solution come out 

be correct, because you are really not looking at a large number of, not considering a 
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large number of sub problems. 

(Refer Slide Time: 08:39) 

 

So, suppose we change the interval scheduling problem very slightly, we associate with 

each request a weight, a weight could be for example, the amount somebody is willing to 

pay, so may be people are trying to book, so we have an auditorium which we enter for 

performances and other activities. And people, who come to use it are willing to pay to 

use it. Of course, there is only one auditorium, so two people cannot use at the same 

time. 

Now, our earlier goal was to maximize the number of bookings that we gave, but now, 

we have another criterion which is more immediate, which is how much each person is 

willing to pay. So, even if give to only one person, if that person is paying a lot more 

than everybody else and that would be optimum for us. So, now our aim is to maximize 

the total weight. So, we want to get as much revenue as possible from our allocation not 

the number of bookings, but the total weight. 
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So, recall the greedy strategy in the earlier case, we wanted the earliest finish time. So, if 

we saw this particular selection of three requests, then the earlier finish time would be 

this one. So, we would first take this, that would rule out this and then because the third 

request starts after the first one completes, so you will take this and so we will get two 

keys. And these 2 out of 3 is the best we can do and that was find in the un weighted 

keys. 

But, now unfortunately, what we have is that we have a weight, so we have this weight 

associated with this. So, we have to do something little more clever, because now if we 

choose the first one and third one, then the total weight is only 2. 

(Refer Slide Time: 10:44) 
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So, job, not job, but let us call it booking 1 plus 3 gives a weight of 2, whereas booking 2 

alone gives a weight of 3, because it has a weight 3. So, ideally in this situation, we 

should recognize that the middle request has enough weight to overcome the penalty of it 

being the only one that will be scheduled. So, though we will one get out of 3 request 

schedule, we actually get a maximum benefit from the cost prospect. So, therefore that 

what just means in other words is the greedy strategy which we proved for the un 

weighted case is not valid any more unfortunately. 

(Refer Slide Time: 11:27) 

 

So, what shall we do? so one strategy is to see is there in other greedy strategy, we can 

search for another greedy strategy and try to argue that you would works and argue that it 

works as we saw is rather it takes a little bit of effort. Because, we have to use an 

exchange argument of some such thing to proof that is better than any solution that you 

could get by any others strategy. 

So, the other approach which is what we are going to look at in more detail in the next 

few lectures is to try and look for an inductive solution which is obviously correct that 

which can be evaluated efficiently. So, the goal is to find to save, so what we are going to 

save is this effort in proving that by looking only at a few cases, we are actually 

producing an optimal answer. We would in some sense look at every case, but we look at 

every case in a clever way and that is what, we are going. 
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So, how do we do this for this problem is for this time, let us do something which is 

more direct, then what we did last time ones for looking at the earliest finishing time, just 

look at the earliest starting time. So, let us assume that or tasks are request or call order 

like this. So, we pick them up in this order. So, we are begin with the first booking which 

you called b 1. 

Now, observe that in the final answer, either b 1 is there, b 1 is not there. So, we will take 

two options. So, yes b 1 and no b 1, now if we eliminate b 1, then or sub problem just 

consists of b 2 onwards. So, we just have a sub problem which is b to b N. So, if we 

exclude b 1, then we just use b 2 to b N. So, exclude b 1 means just threw it out and 

pretend you only had N minus 1 close to begin with. 

On the other hand, if we include b 1, then you have to be a little bit careful, because now 

if I include b 1 in this particular thing, so if we include b 1, then we have to rule out 

something which is in conflict. So, we eliminate all the conflicting requests as we did in 

the greedy case and then we have another sub problem which is not necessarily b 2 to b 

N, it will be a some sub set of b 2 to b N. 

But we are now taken both options, we are included b 1 and excluded b 1, so it is more 

reasonable to expect that we have a either a solution with b 1 or without b 1, there are no 

third option, the solution either has b 1 and does not have b 1, we are trying to evaluate 

both and then we are trying to choose the best one. So, this is an inductive decomposition 

of the problem with two sub cases with b 1 without b 1, we are not making any 
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predictions about which is better, we evaluate both and take the better one. 

(Refer Slide Time: 14:21) 

 

So, now let us argue that this kind of strategy actually considers of the options. So, just 

like b 1 for any b j, the solution either has b j or does not have b j, this is very clear. So, 

there are 2 to the N possible solution, I could either have b 1 or not b 1, have b 2 or not 

have b 2. So, I can try every possible subset that would be a group force argument, we 

want to avoid having to try every possible subset. 

Now, for b 1 we have clearly checked both cases explicitly, what about b 2, can we be 

sure that we are checking all cases are b 2 is let us look at b 2. Now, if b 2 and b 1 are not 

in conflict that is b 1 and b 2 or in disjoint intervals, then whether or not b 1 is chosen is 

independent or whether not b 2 is chosen. This means that whether we choose b 1 or b 2 

the resulting sub problem would still allows to choose b 2. 

So, whether we choose b 1 or b not of that b 1 or not b 1 at the beginning, it will be 

considered in both sub problem and when, we solve that you will take the both choices. 

On the other hand, b 1 and b 2 do not or not comparable, that is b 1 rules of b 2 or b, 

because they overlapped. Then, when b 1 is chosen b 2 cannot be there, so b 1 can be 

there only if b 2 can be there only b 1 is not there. 

So, when b 1 is chosen we will not considered b 2, but b 1 is not chosen remember that 

we get the resulting sub problem b 2 to b N. So, again b 2 will be chosen or given a 

choice, therefore b 2 we will consider all options in the presence or absence are b 1. 

Likewise, we can argue that b 3 will be considered in the presence or absence of b 1 and 
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b 2 and what is happening as we are going along making a more on more commitments, 

we are ruling out lot of incompatible combinations which we would otherwise blindly 

considered, we get 2 to the N. 

Now, will shall have to evaluate the efficiently, but the at least that is not that difficult to 

believe that we are actually trying out every possible option. We are not in advance 

deciding that some local criteria like in a greedy strategy is enough to rule out certain sub 

problems has been useless. 

(Refer Slide Time: 16:33) 

 

So, the computational challenge comes from the fact that the sub problems that we 

generate make appear again and again. So, let us look at a simple case, you supposing we 

are the picture that is shown below. So, we have b 1 and b 2 which are in conflict, but 

notice that both b 1 and b 2 are compatible with everything that comes after words. So, if 

we choose b 1, then we rule out b 2 and so the sub problem, we get is b 3, b 4 and b N. 

On the other hand, if you rule out b 1 as we said before you will try out everything that 

remains namely b 2 to b N. Now, what happens you need to try b 2 to b N, so now, when 

you come to b 2 to b N, you have to destroy b 2 or you have to keep b 2. So, supposing 

you discard b 2, then what happens when you discard b 2 from here, you precisely get 

the remaining part which is b 3 to b N. 

So, you again generate a b 3 to b N problem which were already asked once in the 

context of disk of choosing b 1. So, you now have that you have choose b 1, say yes, no; 

if you choose b 1 I get this problem which is b 3 to b N. Then, if I choose no, then I get a 
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chance to choose b 2 again yes, no and now if I do not choose b 2. Then, I discard b 2 

again I get b 3 to b N, so I will be solving this problem once here and once here, unless I 

do something clever. 

(Refer Slide Time: 18:09) 

 

So, the whole problem with this approach is that the inductive solution can give rise to 

the same problem at different stages. And if we just use recursion as we said before one 

of the great benefits are having on detective definition is that you can just write a 

recursive solution which just mirrors the inductive definition of the problem. But if you 

do it naively, every time you come to the function to be done inductively, you recursively 

call that same function, even if you have done it before and this can be very expensive 

efficiency. 

So, the goal of dynamic programming is to avoid this wastefulness. So, there are two 

techniques that we will see, there is technique called memoization, which is a way to 

build in some cleverness into recursion. So, that you never call this same function twice 

recursively. And dynamic programming will then be a way to avoid doing this recursive 

calls all together. So, dynamic programming is a way to enumerate the sub problems 

directly and solve them, knowing that the sub problems have some dependencies which 

you can predict. 

So, we will look at these two techniques, the next couple of lectures and look at several 

examples to get familiar with these notions of memoization and dynamic program, which 

are essentially ways of making inductive definitions at the corresponding recursive 
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implementations efficient to solve. 
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