
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 07

Module - 01

Lecture - 44

Dynamic Programming

In the next few lectures, we will look at a very powerful technique for designing

algorithms called dynamic programming.

(Refer Slide Time: 00:08)

So, the starting point of dynamic programming is to consider, what we would call

inductive definitions. Now, there are many very simple functions which we come across

which are inductive. So, we all know that mathematically n factorial is n times n minus 1

factorial. So, we can write an inductive definition of factorial is follows. The base case is

when n is 0 and in this case the factorial is 1, so f of 0 is 1.

And in general, if we have n greater than 0, then f of n is given by n times f of n minus 1.

In other words, we express the factorial of n in terms of the same function applied to a

smaller input, now this kind of inductive definition is not restricted only to numeric

problems, you can also do it for structural problems. So, for an example in a list or an

array, you can consider a sub list or a sub array as a smaller problem.

So, here is a very simple way of describing insertion sort. So, if I want to sort n elements,

then the way insertion sort does is that of course, there is nothing to sort the base case,

562

then we have done. Otherwise, we look at the rest of the list starting from the second

element and we recursively sort it and then we insert the first element into the sorted list.

So, the insertion sort apply to X 1 to X n, requires us to insert the value X 1 in the

recursively sort to X 2 to X n. So, again we are applying the same function that we are

trying to define to a smaller input and in the base case, the smallest input namely the

empty one, we have an answer which is readily available for us.

(Refer Slide Time: 01:57)

So, one of the attractions are having inductive definitions is that the yield in a very

natural way recursive programs. So, we do not have to think much, we can almost take

the inductive definition and directly translated it as a program. So, here is a translation

for factorial which more or less reflex the structure that we had before, remember that

the structure that we had before that was f of 0 is equal to 1 and f of n is equal to n times

f of n minus 1.

So, we say if n... Now, just to make it little more robust, so that people give, they give

negative numbers, we get sensible answers, so just checking n equal to 0, you can just

check for any value 0 or less, we will just return 1. If somebody ask if a factorial of

minus 7, we just want to return 1. But the expected thing is that they will start with 0 and

then if they give us a positive number which is bigger than 0, then we will go to the

recursive keys.

So, we will compute factorial for n minus 1 multiply by n and then return this answer,

well. So, there is a very direct one to one correspondence between this inductive

563

definition and the recursive program and that is what makes inductive definitions very

attractive from the point of view of describing a function. Because, the inductive

definition can be mathematically justified and then the program is obviously correct;

obvious in codes, because it follows directly from the recursive of the inductive

definition.

(Refer Slide Time: 03:17)

So, what such inductive definitions exploit is what is sometimes called the optimal sub

structure property. So, what is complicated base means basically is what you expect from

an inductive definition that is you solve the original problem by combining solution to

sub problems. So, the solutions to the original problem are derived in terms of solutions

in the sub problem and in particular to this sub problem is of same type, then it is

computing the same type of answer.

Now, in numerical question like factorial, it does not make sense to say something is

optimal, but for example, when you doing insertion sort and certainly when you sort the

sub list, the result of that is what you want for that sub list. So, this gives raise to a notion

of a sub problem. So, factorial of n minus 1 is a factorial sub problem of factorial of n

obviously, but it is just so happens at factorial of n, only required factorial of n minus 1.

Now, we could have problems which require more than one immediate is smaller sub

problem, for instance factorial n minus 2 is also a sub problem, n minus 3 is also a sub

problem and so on. So, any smaller input can be treated as the sub problem of the

original thing. Likewise, when we actually do insertions sort, we give it the input X 1 to

564

X n and we ask to sort X 2 to X n. So, this is the sub problem which is directly part of the

state.

But, in general one could think of any segment X i to X j to sort as a sub problem of

sorting, this would happens for a instances something like merge sort or quick sort,

especially in merge sort. Then, you break up the array into halves and then into quarters

and so on, so at any given point you are applying the same algorithm to some segment

from A i to A j.

(Refer Slide Time: 05:05)

So, now let us look at a problem that we are seen before in the context of greedy

algorithms. So, we will look at the problem called interval scheduling. So, integrated

scheduling said that we had a resource which is available over a period of time and now

people will come and make bookings for these resources. So, somebody may want to

book it during this segment, somebody else may want to book it in this segment,

somebody else may wanted it during these segment and so on.

Now, during these overlapping things, you cannot give the resource to two people, so

you have given a set of request each for the starting time and an ending time. So, we

have a start and an end or a finish time and now what you want to do is, decide which of

these requests you can allocate, so that the maximum number of bookings are actually

granted. So, the goal is to maximize the number of bookings not the length of the

bookings, but the number of bookings.

565

(Refer Slide Time: 06:03)

So, in this particular case, what happens is that when you honour a booking, now if a

booking happens to be overlapping with few other bookings, then if I decided to take this

booking, then this goes away. So, these two bookings which overlapped with it, it can no

longer be scheduled, because they are conflict with this in sometime interval. So,

therefore now we have to solve or find a way of allocating the remaining bookings for

some subset of the problem of the bookings.

So, each subset of the bookings is a sub problem in this case and the strategy that we saw

was a greedy one, which said to pick the one which has the earliest finishing time. So,

among all those bookings which has still available to us to allocate, we pick one in a

greedy way by just looking at it among all those are remain the earlier finishing time.

Now, this as we said, when we add, it will eliminate some bookings which are conflict

that gives us a sub problem and you will solve these sub problem.

566

(Refer Slide Time: 07:06)

So, how many sub problems are there? Now, we have N bookings and every possible

subset of this is a sub problem, so we have an exponential number of sub problems. In

general, we have any possible subset could be are answer. So, we have to look through

all these exponential things in principle in order to find the best allocation, the one that

gives the maximum number of bookings to be satisfied.

Now, what are greedy strategy does is effectively it cuts down this exponential space in

to a linear space, because what it does is it pick, so we have initially bookings 1 to N.

Then, it will pick among these let us we assume that are actually sorted by order of the

earliest finishing time. So, you will take the first one, then you will rule out of few from

there.

And now you will have some remaining and among those we pick the earliest one and

you will rule out of you more and so on. So, at most you will allocate all N of them, but

in each time once you rule include 1, you will rule out of few. So, certainly in a linear

scan, you would look at only that many sub problems. So, you would look only order N

sub problems and find, what you would claim is an optimal answer.

And since, you are doing such a drastic deduction from 2 to the N and order N;

obviously, there is a question to ask whether you overlooked some sub problems

accidently by not examining them at all. So, you need a proof, so that is why in a greedy

strategy, you need to prove that what you are doing actually makes the solution come out

be correct, because you are really not looking at a large number of, not considering a

567

large number of sub problems.

(Refer Slide Time: 08:39)

So, suppose we change the interval scheduling problem very slightly, we associate with

each request a weight, a weight could be for example, the amount somebody is willing to

pay, so may be people are trying to book, so we have an auditorium which we enter for

performances and other activities. And people, who come to use it are willing to pay to

use it. Of course, there is only one auditorium, so two people cannot use at the same

time.

Now, our earlier goal was to maximize the number of bookings that we gave, but now,

we have another criterion which is more immediate, which is how much each person is

willing to pay. So, even if give to only one person, if that person is paying a lot more

than everybody else and that would be optimum for us. So, now our aim is to maximize

the total weight. So, we want to get as much revenue as possible from our allocation not

the number of bookings, but the total weight.

568

(Refer Slide Time: 09:40)

So, recall the greedy strategy in the earlier case, we wanted the earliest finish time. So, if

we saw this particular selection of three requests, then the earlier finish time would be

this one. So, we would first take this, that would rule out this and then because the third

request starts after the first one completes, so you will take this and so we will get two

keys. And these 2 out of 3 is the best we can do and that was find in the un weighted

keys.

But, now unfortunately, what we have is that we have a weight, so we have this weight

associated with this. So, we have to do something little more clever, because now if we

choose the first one and third one, then the total weight is only 2.

(Refer Slide Time: 10:44)

569

So, job, not job, but let us call it booking 1 plus 3 gives a weight of 2, whereas booking 2

alone gives a weight of 3, because it has a weight 3. So, ideally in this situation, we

should recognize that the middle request has enough weight to overcome the penalty of it

being the only one that will be scheduled. So, though we will one get out of 3 request

schedule, we actually get a maximum benefit from the cost prospect. So, therefore that

what just means in other words is the greedy strategy which we proved for the un

weighted case is not valid any more unfortunately.

(Refer Slide Time: 11:27)

So, what shall we do? so one strategy is to see is there in other greedy strategy, we can

search for another greedy strategy and try to argue that you would works and argue that it

works as we saw is rather it takes a little bit of effort. Because, we have to use an

exchange argument of some such thing to proof that is better than any solution that you

could get by any others strategy.

So, the other approach which is what we are going to look at in more detail in the next

few lectures is to try and look for an inductive solution which is obviously correct that

which can be evaluated efficiently. So, the goal is to find to save, so what we are going to

save is this effort in proving that by looking only at a few cases, we are actually

producing an optimal answer. We would in some sense look at every case, but we look at

every case in a clever way and that is what, we are going.

570

(Refer Slide Time: 12:22)

So, how do we do this for this problem is for this time, let us do something which is

more direct, then what we did last time ones for looking at the earliest finishing time, just

look at the earliest starting time. So, let us assume that or tasks are request or call order

like this. So, we pick them up in this order. So, we are begin with the first booking which

you called b 1.

Now, observe that in the final answer, either b 1 is there, b 1 is not there. So, we will take

two options. So, yes b 1 and no b 1, now if we eliminate b 1, then or sub problem just

consists of b 2 onwards. So, we just have a sub problem which is b to b N. So, if we

exclude b 1, then we just use b 2 to b N. So, exclude b 1 means just threw it out and

pretend you only had N minus 1 close to begin with.

On the other hand, if we include b 1, then you have to be a little bit careful, because now

if I include b 1 in this particular thing, so if we include b 1, then we have to rule out

something which is in conflict. So, we eliminate all the conflicting requests as we did in

the greedy case and then we have another sub problem which is not necessarily b 2 to b

N, it will be a some sub set of b 2 to b N.

But we are now taken both options, we are included b 1 and excluded b 1, so it is more

reasonable to expect that we have a either a solution with b 1 or without b 1, there are no

third option, the solution either has b 1 and does not have b 1, we are trying to evaluate

both and then we are trying to choose the best one. So, this is an inductive decomposition

of the problem with two sub cases with b 1 without b 1, we are not making any

571

predictions about which is better, we evaluate both and take the better one.

(Refer Slide Time: 14:21)

So, now let us argue that this kind of strategy actually considers of the options. So, just

like b 1 for any b j, the solution either has b j or does not have b j, this is very clear. So,

there are 2 to the N possible solution, I could either have b 1 or not b 1, have b 2 or not

have b 2. So, I can try every possible subset that would be a group force argument, we

want to avoid having to try every possible subset.

Now, for b 1 we have clearly checked both cases explicitly, what about b 2, can we be

sure that we are checking all cases are b 2 is let us look at b 2. Now, if b 2 and b 1 are not

in conflict that is b 1 and b 2 or in disjoint intervals, then whether or not b 1 is chosen is

independent or whether not b 2 is chosen. This means that whether we choose b 1 or b 2

the resulting sub problem would still allows to choose b 2.

So, whether we choose b 1 or b not of that b 1 or not b 1 at the beginning, it will be

considered in both sub problem and when, we solve that you will take the both choices.

On the other hand, b 1 and b 2 do not or not comparable, that is b 1 rules of b 2 or b,

because they overlapped. Then, when b 1 is chosen b 2 cannot be there, so b 1 can be

there only if b 2 can be there only b 1 is not there.

So, when b 1 is chosen we will not considered b 2, but b 1 is not chosen remember that

we get the resulting sub problem b 2 to b N. So, again b 2 will be chosen or given a

choice, therefore b 2 we will consider all options in the presence or absence are b 1.

Likewise, we can argue that b 3 will be considered in the presence or absence of b 1 and

572

b 2 and what is happening as we are going along making a more on more commitments,

we are ruling out lot of incompatible combinations which we would otherwise blindly

considered, we get 2 to the N.

Now, will shall have to evaluate the efficiently, but the at least that is not that difficult to

believe that we are actually trying out every possible option. We are not in advance

deciding that some local criteria like in a greedy strategy is enough to rule out certain sub

problems has been useless.

(Refer Slide Time: 16:33)

So, the computational challenge comes from the fact that the sub problems that we

generate make appear again and again. So, let us look at a simple case, you supposing we

are the picture that is shown below. So, we have b 1 and b 2 which are in conflict, but

notice that both b 1 and b 2 are compatible with everything that comes after words. So, if

we choose b 1, then we rule out b 2 and so the sub problem, we get is b 3, b 4 and b N.

On the other hand, if you rule out b 1 as we said before you will try out everything that

remains namely b 2 to b N. Now, what happens you need to try b 2 to b N, so now, when

you come to b 2 to b N, you have to destroy b 2 or you have to keep b 2. So, supposing

you discard b 2, then what happens when you discard b 2 from here, you precisely get

the remaining part which is b 3 to b N.

So, you again generate a b 3 to b N problem which were already asked once in the

context of disk of choosing b 1. So, you now have that you have choose b 1, say yes, no;

if you choose b 1 I get this problem which is b 3 to b N. Then, if I choose no, then I get a

573

chance to choose b 2 again yes, no and now if I do not choose b 2. Then, I discard b 2

again I get b 3 to b N, so I will be solving this problem once here and once here, unless I

do something clever.

(Refer Slide Time: 18:09)

So, the whole problem with this approach is that the inductive solution can give rise to

the same problem at different stages. And if we just use recursion as we said before one

of the great benefits are having on detective definition is that you can just write a

recursive solution which just mirrors the inductive definition of the problem. But if you

do it naively, every time you come to the function to be done inductively, you recursively

call that same function, even if you have done it before and this can be very expensive

efficiency.

So, the goal of dynamic programming is to avoid this wastefulness. So, there are two

techniques that we will see, there is technique called memoization, which is a way to

build in some cleverness into recursion. So, that you never call this same function twice

recursively. And dynamic programming will then be a way to avoid doing this recursive

calls all together. So, dynamic programming is a way to enumerate the sub problems

directly and solve them, knowing that the sub problems have some dependencies which

you can predict.

So, we will look at these two techniques, the next couple of lectures and look at several

examples to get familiar with these notions of memoization and dynamic program, which

are essentially ways of making inductive definitions at the corresponding recursive

574

implementations efficient to solve.

575

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

