
Chapter 3: Second-Order Homogeneous Equations with
Constant Coefficients

Introduction

Second-order differential equations frequently appear in the field of civil engi-
neering, especially in structural analysis, fluid dynamics, soil mechanics, and
vibration problems. A particularly important class is the homogeneous linear
differential equations with constant coefficients, which allows for ana-
lytical solutions using exponential functions. This chapter provides a detailed
treatment of the general form of these equations, methods of solving them, and
examples relevant to engineering contexts.

3.1 General Form of the Equation

A second-order homogeneous linear differential equation with constant
coefficients takes the form:

a
d2y

dx2 + b
dy

dx
+ cy = 0

Where:

• a, b, c are constants (real numbers),
• y(x) is the unknown function,
• d2y

dx2 is the second derivative,
• The equation is homogeneous because the right-hand side is zero.

This type of equation models many real-world phenomena, such as:

• Vibrations in beams (Euler-Bernoulli beam theory),
• Free oscillations of structures,
• Groundwater flow under steady-state conditions.

3.2 Characteristic Equation

To solve the differential equation, we assume a solution of the form:

y = erx

Substituting into the original equation:
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ar2erx + brerx + cerx = 0

Divide through by erx (never zero):

ar2 + br + c = 0

This is known as the characteristic equation or auxiliary equation.

ar2 + br + c = 0

Solve this quadratic to find roots r1 and r2. The nature of the roots determines
the general solution.

3.3 Cases Based on Nature of Roots

Case 1: Distinct Real Roots (D = b2 − 4ac > 0) Let the roots be r1 and
r2, with r1 ̸= r2 and both real.

General Solution:

y(x) = C1er1x + C2er2x

Where C1 and C2 are arbitrary constants determined by initial or boundary
conditions.

Example:

y′′ − 5y′ + 6y = 0 ⇒ r2 − 5r + 6 = 0 ⇒ r = 2, 3

⇒ y(x) = C1e2x + C2e3x

Case 2: Repeated Real Roots (D = 0) Let the root be r1 = r2 = r.

General Solution:

y(x) = (C1 + C2x)erx

Example:

y′′ − 4y′ + 4y = 0 ⇒ r2 − 4r + 4 = 0 ⇒ r = 2
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⇒ y(x) = (C1 + C2x)e2x

Case 3: Complex Roots (D < 0) Let the roots be complex: r = α ± iβ

General Solution:

y(x) = eαx (C1 cos(βx) + C2 sin(βx))

This represents damped oscillations—highly relevant in civil engineering (e.g.,
vibration analysis, seismic behavior).

Example:

y′′ + 2y′ + 5y = 0 ⇒ r2 + 2r + 5 = 0 ⇒ r = −1 ± 2i

⇒ y(x) = e−x (C1 cos(2x) + C2 sin(2x))

3.4 Applications in Civil Engineering

1. Free Vibration of Structures In modeling free vibrations of a mass-spring
system or cantilever beam:

m
d2y

dt2 + c
dy

dt
+ ky = 0

Where:

• m: mass
• c: damping coefficient
• k: stiffness

This is a second-order homogeneous ODE. Its solution tells us whether the
structure oscillates, settles, or diverges over time.

2. Deflection of Beams (Euler-Bernoulli Beam Theory) Governing
equation:

EI
d4y

dx4 = q(x)
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For constant load q(x) = 0, this reduces to:

d4y

dx4 = 0 ⇒ Integrating twice leads to second-order ODEs.

These can often be handled using the methods in this chapter.

3. Groundwater Flow (Steady-State) Laplace's equation in 1D steady-
state flow:

d2h

dx2 = 0

Again, this is a homogeneous second-order equation with real constant coeffi-
cients.

3.5 Initial and Boundary Conditions

To obtain a unique solution, we often need initial or boundary values.

For example:

y(0) = y0, y′(0) = y1

Substitute these into the general solution to determine C1 and C2.

3.6 Methodical Approach to Solving Second-Order Homogeneous
Equations

Solving these equations systematically helps in mastering the concept:

Step 1: Write the Differential Equation Ensure it's in the standard form:

a
d2y

dx2 + b
dy

dx
+ cy = 0

Step 2: Form the Characteristic Equation

ar2 + br + c = 0

4



Step 3: Find the Roots Use the quadratic formula:

r = −b ±
√

b2 − 4ac

2a

Step 4: Determine the Type of Roots

• Real and distinct
• Real and equal
• Complex conjugate

Step 5: Write the General Solution Based on Root Type Refer to
Section 3.3 for the structure of the solution.

Step 6: Apply Initial/Boundary Conditions Use given values of y(x0)
and y′(x0) to solve for constants C1, C2.

3.7 Solved Examples

Example 1: Real and Distinct Roots Solve:

d2y

dx2 − 7 dy

dx
+ 10y = 0, y(0) = 3, y′(0) = 5

Step 1: Characteristic equation:

r2 − 7r + 10 = 0 ⇒ r = 2, 5

General solution:

y(x) = C1e2x + C2e5x

Apply initial conditions:

y(0) = C1 + C2 = 3 (i)

y′(x) = 2C1e2x + 5C2e5x ⇒ y′(0) = 2C1 + 5C2 = 5 (ii)

Solve equations (i) and (ii):

From (i): C1 = 3 − C2 Substitute into (ii):
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2(3 − C2) + 5C2 = 5 ⇒ 6 − 2C2 + 5C2 = 5 ⇒ 3C2 = −1 ⇒ C2 = −1
3

Then C1 = 3 + 1
3 = 10

3

Final solution:

y(x) = 10
3 e2x − 1

3e5x

Example 2: Repeated Roots Solve:

d2y

dx2 − 4 dy

dx
+ 4y = 0, y(0) = 2, y′(0) = −1

Characteristic equation:

r2 − 4r + 4 = 0 ⇒ r = 2 (repeated)

General solution:

y(x) = (C1 + C2x)e2x

Apply initial conditions:

y(0) = C1 = 2 (i)

y′(x) = [C2 + 2(C1 + C2x)]e2x ⇒ y′(0) = (C2 + 2C1) = −1 (ii)

From (i): C1 = 2

Substitute into (ii): C2 + 4 = −1 ⇒ C2 = −5

Final solution:

y(x) = (2 − 5x)e2x
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3.8 Graphical Interpretation of Solutions

• Real distinct roots → Exponential growth/decay (no oscillation)
• Repeated roots → Exponential decay/growth with polynomial weight
• Complex roots → Oscillatory motion with damping/growth (spiral-like

in phase space)

Include plots using software (MATLAB/Python) for:

• Overdamped systems (real roots)
• Critically damped (repeated roots)
• Underdamped systems (complex roots)

3.9 Engineering Insight: Damping in Vibrations

In structural dynamics, the equation:

m
d2x

dt2 + c
dx

dt
+ kx = 0

Models a damped vibrating system. Define damping ratio:

ζ = c

2
√

mk
, ωn =

√
k

m

Then the system’s behavior is:

• ζ > 1: Overdamped (real distinct roots)
• ζ = 1: Critically damped (repeated roots)
• ζ < 1: Underdamped (complex roots)

Application: Civil engineers design buildings and bridges to respond within a
controlled damping range to seismic activity.

3.10 Problems for Practice

1. Solve:

d2y

dx2 + 3 dy

dx
+ 2y = 0, y(0) = 1, y′(0) = 0

2. Solve and classify the roots:

y′′ + y′ + y = 0

3. A cantilever beam’s deflection satisfies:
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EI
d4y

dx4 = 0

• Integrate twice and show that the solution involves a second-order homo-
geneous ODE. Then solve assuming zero shear and moment at the free
end.

4. Solve:

y′′ − 6y′ + 13y = 0, y(0) = 0, y′(0) = 2

Summary

• Second-order homogeneous equations with constant coefficients are foun-
dational in modeling real-world engineering systems.

• The solution depends entirely on the discriminant D = b2 − 4ac:

– D > 0: Real distinct roots
– D = 0: Real repeated root
– D < 0: Complex conjugate roots

• Methods learned here apply directly to vibration analysis, structural de-
flection, and flow through porous media.

• The exponential function-based solutions allow for a wide range of physi-
cal behaviors (e.g., exponential decay, oscillations, over-damping/under-
damping).
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