
Chapter 7: Free Vibration of Single Degree of 
Freedom (SDOF) System

Introduction
The study of vibrations is a foundational concept in structural dynamics and 
earthquake engineering. A structure, when subjected to dynamic forces such as 
those generated by earthquakes, responds with motion that can be understood 
and predicted through vibration theory. One of the most basic and important 
systems in vibration analysis is the Single Degree of Freedom (SDOF) system. The 
understanding of free vibration of an SDOF system, in the absence of any external 
forces and damping, lays the groundwork for more complex dynamic analysis and 
is essential in seismic design and assessment of structures.

7.1 Definition of Free Vibration
Free vibration refers to the motion of a mechanical system when it is allowed to 
vibrate naturally without the influence of external forces after an initial 
disturbance. For a SDOF system, this typically involves a mass-spring system set 
into motion and allowed to oscillate freely.

7.2 Idealization of SDOF System
A single degree of freedom system is characterized by:

 One mass (m) which can move in only one direction.
 One spring with stiffness (k).
 No damping or external forcing (for the undamped case).
 A displacement function x(t) which fully describes the motion.

This system is often represented by a mass attached to a spring that can move 
vertically or horizontally, depending on the setup.



7.3 Equation of Motion for Free Vibration
The general equation of motion for an undamped SDOF system undergoing free 
vibration is:

m ẍ( t)+k x (t)=0

Where:

 m = mass of the system
 k  = stiffness of the spring
 x (t) = displacement as a function of time
 ẍ (t) = acceleration (second derivative of displacement)

Dividing the equation by m, we get:

ẍ (t)+ωn
2 x (t )=0

Where ωn=√ km  is the natural circular frequency of the system.

7.4 Solution to the Equation of Motion
The solution to the second-order differential equation is of the form:

x (t)=A cos(ωn t)+B sin (ωnt)

Where:

 A and B are constants determined by initial conditions (initial displacement 
x0 and initial velocity ẋ0).

Alternatively, using the harmonic form:

x (t)=X cos(ωn t+ϕ)

Where:

 X  = amplitude of vibration
 ϕ = phase angle

These parameters can be related back to the initial conditions using:

X=√A2+B2 , tan (ϕ )= B
A



7.5 Natural Frequency and Time Period
Natural Frequency (ωₙ):

ωn=√ km (in radians/sec)

Time Period (T):

T=2π
ωn

=2 π √mk (in seconds)

The natural frequency and time period are intrinsic properties of the system and 
determine how fast or slow the system oscillates under free vibration.

7.6 Initial Conditions and System Response
Given:

 Initial displacement: x (0)=x0

 Initial velocity: ẋ (0)=v0

Then the constants in the general solution are:

A=x0 , B=
v0

ωn

Therefore:

x (t)=x0 cos (ωnt)+
v0

ωn
sin(ωn t)

This form is particularly useful in practical applications when the initial state of the 
system is known.

7.7 Graphical Representation of Motion
The motion of an undamped SDOF system is sinusoidal and periodic. The 
displacement-time plot shows a smooth oscillation about the equilibrium position. 



The frequency remains constant and amplitude does not decay over time (in the 
ideal undamped case).

Plots include:

 Displacement vs. time
 Velocity vs. time
 Acceleration vs. time
 Phase diagram (x vs. ẋ)

7.8 Energy in Free Vibration
In undamped free vibration, total mechanical energy is conserved:

 Kinetic Energy (KE):

K E=1
2
m ẋ2

 Potential Energy (PE):

P E=1
2
k x2

 Total Energy (E):

E=K E+PE=1
2
k X2=constant

Energy keeps transferring between kinetic and potential forms during vibration.

7.9 Effect of Mass and Stiffness
 Increase in mass (m)  decreases natural frequency  system vibrates → →

more slowly.
 Increase in stiffness (k)  increases natural frequency  system vibrates → →

faster.

Understanding this relation is vital in designing structures to avoid resonance 
during earthquakes.



7.10 Resonance in SDOF Systems
Although resonance is more critical in forced vibration, understanding free 
vibration helps explain why a system vibrates violently when excited at its natural 
frequency. Avoiding this frequency is a key part of structural design in earthquake-
prone zones.

7.11 Real-World Application in Earthquake Engineering
 Most structures can be idealized as SDOF systems for initial analysis.
 Helps predict how a structure will respond when an earthquake provides an 

initial displacement or velocity.
 Provides a benchmark for validating computational models and design 

codes.

7.12 Damped vs Undamped Free Vibration (Introduction to 
Damping)
Although this chapter primarily focuses on undamped systems, a brief 
understanding of damping is essential for transitioning to real-world systems.

 In undamped systems, oscillations continue indefinitely with constant 
amplitude.

 Real structures exhibit energy dissipation due to internal material friction, 
air resistance, and connection slippage.

 Introduction of damping modifies the differential equation:

m ẍ( t)+c ẋ (t )+k x( t)=0

Where c = damping coefficient.

The behavior of the system then depends on the damping ratio:

ζ= c

2√k m

This concept sets the stage for understanding critical damping, underdamping, 
and overdamping, which are central to earthquake-resistant design.



7.13 Logarithmic Decrement (δ)
Logarithmic decrement is used to measure damping in systems by evaluating the 
rate at which amplitude decays:

δ=1
n

ln( x (t )
x (t+nT ) )

Where:

 n = number of cycles
 T  = time period
 x (t), x (t+nT ) = amplitudes at different times

It is useful in experimental modal analysis for damping estimation of real 
structures.

7.14 Phase Plane Representation
Phase plane plots represent motion using velocity vs. displacement:

 The trajectory forms an ellipse in undamped systems.
 The shape and orientation help identify dynamic behavior visually.
 Useful in nonlinear systems and stability analysis.

7.15 Numerical Solution of Free Vibration (Finite 
Difference Method)
In practical problems where an analytical solution is not possible (e.g., complex 
geometries or variable properties), numerical methods are employed.

The finite difference method involves:

 Discretizing time
 Approximating derivatives
 Solving iteratively for x (t)

For example, using central difference:

x i+1=2 x i− xi− 1−ωn
2 xi Δt

2



Where Δt  is the time step.

7.16 Modal Parameters and Experimental Determination
Engineers often need to determine a structure’s natural frequency and mode 
shapes experimentally.

 Modal Testing involves applying a known disturbance and measuring 
response.

 FFT (Fast Fourier Transform) and Frequency Response Function (FRF) are 
used to extract:

o Natural frequency
o Damping ratio
o Mode shapes

These tests are often conducted in laboratories or in-field seismic evaluations.

7.17 Vibration Isolation and Structural Implications
Understanding free vibration behavior is essential in designing systems with 
vibration isolation:

 Structures must be isolated from ground motion to reduce amplification.
 Use of base isolators, rubber bearings, or tuned mass dampers is based 

on altering the natural frequency of the structure.

Design aims to avoid matching the building's natural frequency with dominant 
earthquake frequencies.

7.18 Role in Seismic Design Codes
Design codes such as IS 1893, ASCE 7, and Eurocode 8 utilize fundamental natural 
periods (derived from SDOF behavior) to:

 Calculate base shear
 Assign importance factors



 Determine design spectra

The simplified SDOF model is the core assumption in response spectrum analysis 
used in most earthquake-resistant structural designs.

7.19 Case Studies and Real-World Observations
Examples from past earthquakes (e.g., Bhuj 2001, Nepal 2015) demonstrate how:

 Buildings with unfavorable natural frequencies failed due to resonance.
 Tall and flexible structures experienced higher modes.
 Retrofitting solutions were applied based on vibration characteristics.

Field studies validate the accuracy of SDOF assumptions in preliminary analysis.
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