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Local volumetric strain and local infinitesimal rotation

Hello Everyone! Welcome to Lecture 13! In this lecture, we will discuss about two concepts: local

volumetric strain and the local rotation tensor.

1 Local Volumetric Strain (start time: 00:31)

We consider a body being deformed as shown in Figure 1. As the body deforms, the volume of every

small region (called local volume element) of the body also changes. We can therefore define a quantity
called local volumetric strain because the change in volume perunit volumewill be different fordifferent
parts in the body. Let us think of three line elements∆X, ∆Y and ∆Z forming a parallelopiped at the point

of interest X in the reference configuration as shown in Figure 1. We should keep in mind that the sides
of the parallelopiped are very small so that the parallelopiped lies in a tiny region near X. As the volume
of this region is shrunk to zero, wewill be able to define local volumetric strain at the point X itself. Upon

deformation, the point X goes to x and the three line elements become ∆x, ∆y and ∆z which again
generate a parallelopiped.

Figure 1: The local volume element in reference and deformedconfigurations are shownas

parallelopipeds.
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As the volume of a parallelopiped is givenby scalar triple product of vectors forming its sides, the volume
of the parallelopiped in the reference configuration (denotedby V ) will be

V = ∆X · (∆Y × ∆Z) (1)

Here, the term (∆Y × ∆Z) gives the area formedby the vectors ∆Y and ∆Z. The face of the parallelopiped
corresponding to this is shaded in Figure 1. This face is considered to be the base of the parallelopiped.
For this base, the height of the parallelopiped will be the component of ∆X along the shaded face’
normal. So, the volume is obtained by taking the dot product of the base area vector with ∆X. Similarly,

the volume of the parallelopiped in the deformedconfiguration (denotedby v) will be

v = ∆x · (∆y × ∆z) (2)

The volumetric strain (denotedby ϵV ) is definedas

(3)

As we want the volumetric strain at the point of interest itself, the original volume has to be shrunk to
the same point, i.e.,

(4)

1.1 Formula for volumetric strain (start time: 08:09)

The scalar triple product can also be realized as the determinant of a matrix whose columns are formed

by the vectors involved in the scalar triple product. Thus, we can write

, (5)

(6)

Substituting the below formula in (6)

, (7)

we get
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(8)

We can simply it furtherby using the following identity:

(9)

This implies that

(10)

Substituting this in (8) and further dividing by reference volume,we get

(11)

which when substituted in the formula for volumetric strain (4) leads to

(12)

Let us nowwrite the deformationgradient matrix in terms of componentsof displacement gradient, i.e.,

(13)

To obtain its determinant, let us expand it in terms of first row, i.e.,
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(14)

The higher order terms contain quadratic and higher order combinations of displacement gradient
components. Aswe are working with displacements such that the displacement gradients are very small,

the higher order terms can therefore be neglected. Finally, using equation (12), we get the following
formula for local volumetric strain:

(15)

We can notice that the RHS of this equation is equal to the trace of the displacement gradient matrix.

Thus, we can also write

(16)

It should be noted that unlike longitudinal and shear strains, the volumetric strain turns out to be
independent of what triplet of line elements is chosen at a point. Thus, the volumetric strain is unique
at a point.

2 Strain Tensor (start time: 23:11)

Let us now look at the expressionsof all the strains discussed till now collectively:
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We can notice that the expressions for all the strains contain the tensor
1

2
(∇ u + ∇ uT). This quantity is

called the (infinitesimal) Strain Tensor (denotedby ϵ), i.e.

(17)

This is symmetric part of the displacement gradient tensor. Inmatrix form in (e1,e2,e3) coordinate system,
it becomes

(18)

The individual componentsof this matrix can basically be obtained using the following formula:

. (19)

3 Local rotation tensor (start time: 27:58)

We again consider two configurations of our body: the reference configuration and the deformed
configuration. Our point of interest X in the reference configuration gets mapped to the point x in the

deformedconfiguration as shown in Figure 2. We have infinite line elements that one can think of at X
some ofwhich are shown in Figure 2. Anyundeformed line element can be transformed to the deformed
line elementusing the relation ∆x = F∆X if the undeformed line element is small enough.
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Figure 2: Various line elements in a tiny region at a point X in the reference configuration of the body
get mapped to line elements in the deformedconfiguration.

We also know the relation between the deformation gradient tensor and the displacement gradient

tensor:

(20)

The symmetric part of the displacement gradient tensor was defined as the strain tensor ( ϵ). Let us
denote the anti-symmetric part of the displacement gradient tensoras W. Thus, we have

F = I + ϵ +W (21)

using which we can write

(22)

This representation for the deformed line elementhas a physical meaning associated to it. We again look

at Figure 2 where a small region around X is shown by the red dotted curve. The line elements in this
volume are transformed by multiplying F to them. According to the representation given in equation
(22), the first term ϵ∆X is responsible for straining the small volume around X, i.e., it generates
longitudinal, shear and volumetric strain in this region. If the displacement is such that the strain tensor

ϵ is 0 at a point, then there will be no strain of any kind in the neighbourhood of that point. Stated
differently, the line elements in a tiny volume around that point will undergo no change in length or
change in angle between them. The tiny volume will also retain its volume. However, due to remaining
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terms in (22), wewill prove later that these line elements will undergo rigid rotation. As W can vary from
point to point, this rigid rotation will be different at different points which is a bit diff icult to visualize:
the bodybeing deformable (not rigid), tiny volumesaround differentpoints of a body neednot undergo

same rigid rotation. Stated differently, although the body is behaving as a rigid body locally (due to no
local strain), as a whole the body deforms due to variation in local rigid rotation. To prove that I +W is
indeed responsible for local rotation, we first introduce a way to express rotation tensor.

3.1 Rodrigues’ Rotation Formula (start time: 38:17)

Suppose, a is a unit vector denoting the axis of rotation and θ is the angle of rotation about this axis.
Then, the rotation tensor is given by

R(a,θ) = I cosθ + a sinθ + a⊗ a (1 − cosθ). (23)

Here, a denotes the skew symmetric tensor corresponding to a. Stated differently, the vector a is the
axial vector of the skew symmetric tensor a. This is a general formula for rotation which is valid even
when the angle of rotation θ is large. Let’s consider the case where the angle of rotation (θ) is very small.

We can then approximate the trigonometric functions using their Taylor’s expansion, i.e.,

(24)

Note that we have keptonly the terms that are most significant. Substituting them in equation (23), we
get

R(a,θ) = I + θ a + a⊗ a (1 − 1) = I + θ a. (25)

Thus, an arbitrary small/infinitesimal rotation can be represented using the above formula which can

now be compared with the expression I + W in (22). This proves that I + W indeed represents local
infinitesimal rotation.

3.1.1 An example for rotation (start time: 43:27)

Consider rotation about e3 axis by angle θ. The rotation matrix for such a rotation was discussed in the
first lecture and is given by

(26)

If θ is taken to be very small, this matrix reduces to
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(27)

The second term here is a skew symmetric matrix. Its axial vector has only third component non-zero
and equal to 1 which is also the column form of e3: the axis of rotation in this example. Similarly, the
coefficient of skew symmetric matrix is θ: the angle of rotation.

3.2 Extracting the axis and angle of local rotation (start time: 46:24)

Letwdenote the axial vector ofW. Then, uponcomparing I +Wwith (25),we can conclude the following:

(28)

Let us now look at the matrix form of the skew symmetric tensorW in (e1,e2,e3) coordinate system:

(29)

The column form of axial vector of W will then be

(30)

The magnitude of this vector will thenbe the angle of rotation and the unit vector in its direction will be
the axis of local rotation.
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3.2.1 An example (start time: 51:13)

Let us consider an examplewhere our coordinate system is (e1,e2,e3) and the displacement components
are given as follows:

u1 = u1(X1,X2), u2 = u2(X1,X2), u3 = 0. (31)

We have assumed u1 and u2 components to be independentof the third coordinate and u3 is assumed to
be zero. So, the strain matrix in this case according to (18) will be

(32)

It has basically a 2 × 2 non-zero submatrix. This is also called the plane strain case since all the strains
involving e3direction are zero. We can thenobtain the axial vector corresponding to local rotation using
equation (30) to be

(33)

Let us now see how the above strain and rotation matrices act on the system. As the displacement is
confined in e1 − e2 plane, we take two line elements in this plane along e1 and e2 directions with

magnitudes ∆X1and ∆X2 respectively (see Figure 3). Let us analyze the effect of strain and rotation on
their deformation separately. First, let’s consider only ϵ acting on the line elements. The line elements
do not undergo any rigid rotation for now. Shear strain causes change in angle between the two line
elements. The total shear in this case will be

(34)

which can be thought of as both the line elements rotating byhalf of this quantity in opposite directions
(see themiddle of Figure 3). We then superimpose local rigid rotation in the second step.We can deduce

the angle of local rigid rotation from equation (33) to be . Hence, both the line

elementswill further rotate by this amount in the same direction.
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Figure 3: Two line elements in e1 − e2 plane in the reference configuration deform by the action of
strain and rigid rotation one after the other

We can now add the rotations due to shear and rigid rotation to get the total rotation of the line

elements. The total rotation of line elementalong e1 will be

Total rotation = rotation due to shear + local rigid rotation

(35)

For the line elementalong e2, the rotation due to shear is in the opposite direction (clockwise). Therefore

Total rotation = rotation due to shear + local rigid rotation

(36)

The total rotations for the two line elements are exactly the same that we had seen in the last lecture
(see section 3.1 in last lecture). This also verifies that we can view the total rotation of a line elementas
the sum of rotations due to shear and local rigid rotation.
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