
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 07

Module - 06

Lecture - 49

Matrix Multiplication

For our last example of dynamic programming to this week, now we look at the problem

of the efficiently multiplying the sequence of matrices.

(Refer Slide Time: 00:09)

So, as you probably know to multiply two matrices A and B, we need compatible

dimensions, so if we have A and B, then we need that the number of columns in A must

match the number of rows in B. So, we have m times n matrix A and an n times p matrix

B and the final matrix is going to be your times m times p, that the same number of rows

as A must have same number of columns as B. And the way you compute that product A

B, so if I want the i j th entry in A B, then I will take the i th row in A and I some have

multiplied with the j th column B. So, I will take the first entry here, the first entry there,

so I will take A i 1 and B 1 j, multiply them A i 2 B 2 j multiply them, finally A i n b n j

multiply add them all.

So, this takes order n steps, because I am computing order n pair wise products and then

adding them all. So, therefore, I have to compute finally m times p entries, each entry

642

requires a linear order n amount to there. So, the total cost of multiplying two matrices in

terms of basic arithmetic operations is of the order of m times n times p. So, this is the

basic fact that we need for the problem.

(Refer Slide Time: 01:34)

So, now the concern is not computing the product of two matrices by computing the

product of 3 or more. So, supposing I want to multiply three matrices A, B and C, at a

time I can even multiply I need 2. So, either I have to multiply it as A times B, let an

intermediate matrix A B and then multiply by C or I can do B times C and then

multiplied by A from B itself.

So, matrix multiplication is not commutative, we do not have this in general. So, it is

important that the order is the same, but within that in which sequence I do this

simplification does not matter. So, it is associative, I can bracket it by as A times B

followed by C or A times B followed by C, either way I could do two matrix

multiplications and what associativity means is that the answer will not change, the final

product would remain the same.

But, what is interesting for us, now is that the complexity of computing the answer can

change depending on which order I do it, whether I do it as A times B followed by C or

first at B times C and then might be multiply by A.

643

(Refer Slide Time: 02:47)

So, let us look at a very trivial example. So, I have three matrices of this kind, so A is 1

and these are matrix which looks like this, it has 1 row and 100 columns, B is a matrix

which looks like this, it has 100 rows and 1 column and C is again a matrix, so it looks

like this. So, this is my A, this is my B and this is my C. So, now, supposing I do B times

C first, if I do B times C what happens is in this 100 will now blow up and I will get a

big matrix which is 100 by 100.

Because, I have 100 rows here and 100 columns there and so the final thing is going to

be number of rows in B and number of columns in C. So, the B times C matrix is

actually 100 by 100 and how many steps it will take, it takes m into n into p which is 100

into 1 into 100 which is 10,000 steps. Now, I have A which is 1 by 100 and B which is

100 by 100, so I am going to produce something which is again 100, 1 by 100 that you I

want to take 1 into 100 into 100, we call m into n into p, another term ((Refer Time:

03:56)).

So, together this particular sequence requires 20,000 steps, predict the other way on the

other hand, if I computed this product first, then I have collapse it to a simple 1 by 1

matrix. So, the number of rows here is 1 and the number of columns is there 1, so A B is

1 by 1 matrix and it takes only 100 steps to compute. And now, again I have a 1 by 1

times of 100 by 1 matrixes, so again it takes only 100 steps, so this takes only 200 steps.

644

So, you can see that there can be a dramatic difference in the complexity depending on

whether you, the bracketed is A B followed by C or A followed by B C.

(Refer Slide Time: 04:33)

So, in general we have a sequence of M such matrices, it is right, so M 1, M 2 up to M n

and their dimensions will be r 1 C 1, r 2 C 2 up to r n C n number of rows, number of

columns. The dimensions will be given to us, so that we can be multiplied. Number that

all we need, assuming the entries of course, can be combined by sensible multiplication

addition operations, what we need to be able to multiply two matrices, the dimensions

should match.

So, be guarantee that the column of each matrix, the number of columns is equal to the

number of rows in the next matrix, so that product is well defined. And our goal is to

find an optimum way to compute this product, what is the sequence of basic operations

multiplying two matrices together there we need to perform to get the minimum overall

cost. And this is equivalent to finding an optimum way of bracket. So, remember when I

did A times B times C, the choice of whether to put the bracket like this, how to put the

bracket like this.

In general, if I give you now A times B times C times D, then you can do many things,

you can do A B, C D and then multiply or you can do C D, then B C D, then A B C D or

you can do A B, then A B C, then A B C D. So, there are many different ways in which

645

you can partially compute pairs of product, products of pairs and built up the whole

thing. So, we want to find the optimum way to do this.

(Refer Slide Time: 05:58)

So, let us try and identify the inductive structure in this part. So, our goal is to compute

this long product M 1 to M n, but remember that at every stage we can only multiply two

matrices at a time. So, at the final stage you would multiply two some mat, some two

such matrices. Now, we can regroup by bracketing, but we cannot reorder. So, if we did

the final stage we would have two groups, so you would have done some product from

the left to the midpoint and some product from the midpoint to the n.

So, for some k we would have computed M n to M k and M k plus 1 to M n. In the first

part after doing all this, we will have as many rows as M 1 and as many columns as M k,

so it will be r 1 times C k. Second one will be r k plus 1 to C n and we know that C k is

going to be equal to r k plus 1, so that these two kindly multiplied together. So, the final

cost is going to be m into n into p which is r 1 into C k into C n, so we know how much

the last step takes.

Assuming that it was broken at M k, the last multiplication causes this much. Now, to get

the total cost of doing it with this particular choice of k, we have to get the cost of

computing M 1 to M k and M k plus 1 to M n.

646

(Refer Slide Time: 07:30)

So, we have this final situation and now we have these two sub problems, so we have

this two sub problems and the total cost is going to be the cost of the first sub problem.

However, it much takes to compute M 1 to M k; however, much it takes to compute M k

plus 1 to M n plus the cost of the last step which is to multiply these two sub problems

after that produce one matrix each to multiply those two matrices together. But, we have

said that this k could be anywhere between 1 and n, so which k should we choose.

So, the spirit of these kind of problems that we have been seen this inductive things is

that we do not try to make the choice. We say we have no idea in advance which k is

good, so we just try out all possible case and take the best one, in this case the minimum

value.

647

(Refer Slide Time: 08:21)

In other words, the cost for multiplying M 1 to M n in terms of total number of

operations should be the minimum value of k between 1 and n, it has to be strictly less

than n, because the second part will be n k plus 1. So, between 1 and n or multiplying the

matrices 1 to k, multiplying the matrix k plus 1 to n and adding the cost of the last

multiplication. So, now in turn if I look at this for example, in a break it out, it could

break up at some intermediate point M j. So, I will add some M j plus 1 to M k, so I

would get arbitrary segments from 1 to n as my sub problems.

(Refer Slide Time: 09:08)

648

So, a natural thing is to define the inductive structure on an arbitrary segment from M i

to M j where of course, i is less than j. So, we want the minimum value for any k in the

middle, k between i and j or going for M i to M k and then from M k plus 1 to M j and

the cost of the last multiplication which is r 1 into C k into C j. So, as before we will just

use the index, so instead of writing cost of M 1, cost of M 2, then whatever we will write

i j, cost of i j is the cost of multiplying M i to M j that whole sequence.

(Refer Slide Time: 09:47)

So, let us look at the final inductive form of the equation that we need to compute. So,

the base case is when we are looking at a sequence of length 1, so if you are computing

for example, M 1, M 2, M 3, M 4, then one possibility that are break it up as M 1 times

M 2, M 3, M 4. Now, if I am doing this break up then the cost of doing M 1 is nothing,

because if I am computing from 1 to 1, I am doing no multiplication. So, the cost of i i is

0 and then otherwise I use the recursive formulation we had before.

We take the minimum value for k ranging form i, but not rather strictly less than j of the

cost of i to k, cost k plus 1 to j and r i times C k and C j. And of course, we will only

compute this when i is less than equal to j, we will never be able to, we will never want

to computed when the index j is smaller than i. Now, it is instructed to check what

happens when I do something like cost i i plus 1. So, what this will says that I want to

take M i M i plus 1, now my only possible value for k, so k should be between i and

strictly less than i plus 1.

649

So, that means the only possible value for k is i, so this will break up this thing as M i to

M i and M i plus 1 to M i plus 1 and then inductively those will give me cost 0 and then I

will only get the cost of multiplying this pair which will exactly come out of this pair.

So, there is no problem with this base case, we only need the base case when the two

indices are exactly equal.

(Refer Slide Time: 11:27)

So, now, as before we will have this matrix to fill up, because we have this is not used,

because we require, so i is going this way. So, we have the first index going this way and

the second index going that way, so we basically never need to look at values where the

ending point is before the starting point, so we only need to look top of the time. And

now if you are trying to compute the position i j, then we will need cost i k, that is in this

row we will need values between for smaller values M j and we will need values of the

form j k, k j in other in this column.

So, we will need the values below and to the left which is spectral diagonal, so one way

of doing this is to fill up this way, so that wherever we fill up, we have the values below

already and we also have the other values here left. So, we will fill up this matrix from

bottom top, we can also fill it up by diagonal, but it is very painful to program it. So, it is

better to do it either row by row or column, so you can also start like this way, you could

also do in this way.

650

Since that wherever you start, you have the values below and you get that, so you start in

the diagonal and both right or up. So, either you start at the top left and work down the

diagonal and each diagonal, each column we do bottom to top. Now, you start in the

bottom right and work up the diagonal and each row you do left to right, so either these

would done.

(Refer Slide Time: 13:01)

So, here is a pseudo code for that, so we first initialize the diagonal to be 0 and now we

do what we said before, we said we start all the columns ((Refer Time: 13:15)). So, this

should actually be in a column. So, column 1 we do not have to do because that is the

diagonal in which we started column 2 onwards, so 2 to n. Then for every row starting

from the diagonal up to the top row, we now need to compute this minimum. So, we

initially assume that the value to be filtered is infinity, now infinity could just need the

product of all the dimensions plus 1, because you know that the ((Refer Time: 13:42))

the cost is not going to exceed that.

So, you can choose a large value and what we do is now you check for each value of k,

you find that inductive thing. You look at r to k, k plus 1 to C and then r times C k times

C C. So, you look at this particular value which is the inductive thing and then if it is

smaller than the value you have seen so far, so this is basically computing that min over

k by setting into infinity and then looking and updating every time. So, this is just a

651

direct implementation of the recursive of the inductive thing and it is just enumerating

the sub problems in a way which respects the dependency or gives the input before.

(Refer Slide Time: 14:29)

So, one interesting thing to notice that we are filling up an order n square table, now

when we looked at longest common subsequence or edit distance, we said that the

complexity of the problem time wise was exactly the complexity of the size of the table.

We had an M times M table it takes M times M time to fill it up, because in those two

problems we were filling up each entry looking at exactly three neighbors.

So, we had a constant look up, now here what happens is that when I am abort the

diagonal at some distance in order to fill this entry, I need to scan this row and this

columns. So, the amount of time it takes to fill one entry in my matrix could be linear. In

the extreme case when I am very powerful in the diagonal, I could be spending order n

time to fill that entry. So, each intermediate value of the matrix could require looking at

n intermediate, each value each position could require looking at n intermediate value.

So, though this table is of size n square, the actual complexity of filling the table is of

size n cube that is why this is an interesting problem, because it says that you cannot

directly conclude the complexity of a dynamic programming algorithm from the size of

the table that we are trying to update. Because it also depends on the amount to the effort

you have to take to update each entry in the table.

652

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

