
Chapter 11: Multiple Degree of Freedom 
(MDOF) System

Introduction
In real-world structures, motion due to earthquakes cannot be accurately modeled 
with Single Degree of Freedom (SDOF) systems alone. Most structures such as 
buildings, bridges, and towers possess multiple masses distributed in space and 
can vibrate in several modes simultaneously. These types of systems are best 
represented as Multiple Degree of Freedom (MDOF) systems.

An MDOF system has more than one independent coordinate required to 
describe its motion completely. Analyzing such systems is crucial to understanding 
the dynamic behavior of real-life structures under seismic loads. The chapter 
explores methods to derive equations of motion for MDOF systems, modal 
analysis, natural frequencies, mode shapes, and solutions using numerical 
methods.

11.1 Characteristics of MDOF Systems
 Definition: A mechanical or structural system that requires two or more 

independent coordinates (degrees of freedom) to describe its motion.

 Examples:

o A shear building model with multiple floors.
o Multi-span bridges.
o Towers with mass concentrated at various levels.

 Key Properties:

o Each DOF has an associated mass and stiffness.
o Coupled differential equations govern motion.
o System responds in multiple vibration modes.



11.2 Equations of Motion for Undamped MDOF System
Consider an n-DOF linear system with lumped masses and linear springs. The 
general form of the equations of motion without damping and external forces is:

[M ]{ü(t)}+[K ]{u(t )}={0 }

Where:

 [M ] = Mass matrix (n×n)
 [K ] = Stiffness matrix (n×n)
 {u (t)} = Displacement vector
 {ü (t)} = Acceleration vector

Key Concepts:

 Mass matrix is usually diagonal in lumped-mass systems.
 Stiffness matrix is symmetric and positive-definite.
 This leads to a system of n coupled second-order differential equations.

11.3 Mode Shapes and Natural Frequencies
To determine the natural behavior of the system, we assume a harmonic solution:

{u (t)}={ϕ}sin (ωt)

Substituting into the equation of motion:

([K ]−ω2[M ]){ϕ}={0 }

This is a generalized eigenvalue problem, where:

 ω2 are the eigenvalues (square of natural frequencies)
 {ϕ} are the corresponding eigenvectors (mode shapes)

Properties:

 There are n natural frequencies and n mode shapes.
 Mode shapes are orthogonal with respect to both [M] and [K].

11.4 Orthogonality of Mode Shapes
The eigenvectors (mode shapes) satisfy orthogonality properties:



1. Mass Orthogonality:

{ϕi}
T [M ]{ϕ j}=0 for i ≠ j

2. Stiffness Orthogonality:

{ϕi}
T [K ]{ϕ j}=0 for i≠ j

These properties are used to decouple the equations of motion and simplify 
analysis.

11.5 Normalization of Mode Shapes
Mode shapes can be normalized in two common ways:

 Mass normalization:

{ϕi}
T [M ]{ϕi }=1

 Stiffness normalization:

{ϕi}
T [K ]{ϕi }=1

Normalization is useful for modal superposition and simplification in 
computations.

11.6 Modal Analysis of Undamped MDOF Systems
Using the orthogonality of mode shapes, the equations of motion can be 
decoupled by expressing displacement as a sum of modal contributions:

{u (t)}=∑
i=1

n

ϕiqi(t )

Where:

 ϕi: Mode shape
 q i(t): Generalized (modal) coordinate

Substituting into the original equations yields n uncoupled SDOF equations:

q̈ i(t)+ωi
2q i(t)=0



These can be solved independently, and the total response is obtained by 
summing all modal responses.

11.7 Equations of Motion for Damped MDOF Systems
When damping is present:

[M ]{ü}+[C ]{u̇ }+[K ]{u }={0 }

 [C]: Damping matrix

If damping is classical (proportional), i.e., [C]=α [M ]+β [K ], then the modal 
equations remain uncoupled:

q̈ i(t)+2 ζ iωi q̇i(t )+ωi
2qi( t)=0

Where:

 ζ i: Modal damping ratio
 These equations are identical to damped SDOF systems.

11.8 Response of MDOF Systems to Dynamic Loading
When subjected to external forces or ground acceleration (e.g., earthquakes), the 
equation becomes:

[M ]{ü(t)}+[C]{u̇(t)}+[K ]{u(t )}={f ( t)}

Or, for base excitation due to earthquake:

[M ]{ü(t)}+[C]{u̇(t)}+[K ]{u(t )}=−[M ]{üg(t)}

Where {üg(t )} is the ground acceleration.

Using modal superposition, the solution is:

{u (t)}=∑
i=1

n

ϕiqi(t )

Each modal coordinate q i(t) is found by solving the uncoupled modal equation 
with forcing.



11.9 Numerical Solution Techniques
For large systems or irregular structures, closed-form modal analysis is 
impractical. Numerical methods are used:

 Finite Element Method (FEM) to derive [M] and [K].
 Matrix iteration (e.g., Power Method) for finding dominant modes.
 Newmark’s Method or Wilson-θ Method for time integration.
 Modal truncation: Use only first few dominant modes for efficient 

computation.

11.10 Modal Participation Factor and Effective Mass
In seismic analysis, not all modes contribute equally. Key concepts:

 Modal Participation Factor (Γ i):

Γ i=
{ϕi}

T [M ]{1 }
{ϕi}

T [M ]{ϕi }

It represents how much each mode participates in response to uniform base 
excitation.

 Effective Modal Mass:

M i
e f f=Γ i

2 ⋅{ϕi }
T [M ]{ϕi }

The cumulative effective mass helps identify how many modes are needed to 
capture 90–95% of total mass participation.

11.11 Lumped Mass Matrix and Shear Building Model
For practical structural models like multi-storey buildings:

 Mass is concentrated at each floor.
 Stiffness is represented as inter-storey springs.
 Leads to a tridiagonal stiffness matrix.
 Simplifies the formulation and numerical solution.

This model is commonly used in seismic response studies.



11.12 Example Problems and Applications
Typical problems include:

 Determining natural frequencies and mode shapes for 2-DOF and 3-DOF 
systems.

 Computing seismic response using modal analysis.
 Estimating base shear and floor accelerations.
 Application in time-history and response spectrum analysis.

Applications:

 Earthquake-resistant design.
 Structural health monitoring.
 Retrofitting and vibration control.

11.13 Concept of Modal Superposition Method
The Modal Superposition Method allows for simplification of the dynamic 
response of MDOF systems by transforming the coupled system of differential 
equations into uncoupled modal equations.

Steps Involved:
1. Eigenvalue Analysis: Obtain natural frequencies ωi and mode shapes ϕi.

2. Modal Transformation: Express physical displacements {u (t)} as linear 
combination of mode shapes:

{u (t)}=∑
i=1

n

ϕiqi(t )

3. Formulate Modal Equations: Each equation is now:

q̈ i(t)+2 ζ iωi q̇i(t )+ωi
2qi( t)=Γ i üg(t)

4. Solve Modal Equations: Using numerical methods or analytical techniques.

5. Reconstruct Total Response: By superimposing each modal response.

Advantages:



 Reduces computational effort.
 Captures dynamic behavior accurately using few dominant modes.

11.14 Modal Truncation and Convergence
In most seismic design problems, only a few modes contribute significantly. This 
leads to the concept of modal truncation:

 Truncation involves considering only the first few modes (say, 3 to 5).
 It is justified by analyzing cumulative modal mass participation.
 Ensure at least 90–95% of the total mass is captured.

Modal Mass Participation Ratio:

ηi=
M i

e f f

M t o t a l

×100%

Convergence Check:
 Add modes progressively.
 Stop when the additional mode contributes negligible increase in effective 

mass.

11.15 Rayleigh’s Method for Approximate Frequency
When only the fundamental (first) frequency is needed, Rayleigh’s method offers 
an approximate and quick approach:

Rayleigh Quotient:

ω1
2≈

{u }T [K ]{u }
{u }T [M ]{u }

Where {u } is a trial shape function, typically based on static deflection under 
gravity.

Advantages:

 Useful for hand-calculations.
 Especially helpful for checking software results.



11.16 Time History Analysis of MDOF Systems
Time history analysis is used when ground motion acceleration records are 
available:

 Complete dynamic response is calculated by direct integration over time.

 Requires:

o Ground acceleration üg(t)
o Damping matrix
o Accurate time step

Numerical Integration Methods:
 Newmark-beta Method
 Wilson-θ Method
 Runge-Kutta Methods

Applications:

 Design of critical infrastructure (e.g., hospitals, bridges).
 Verification of dynamic characteristics in structural modeling.

11.17 Response Spectrum Method for MDOF Systems
The Response Spectrum Method provides a simplified way to estimate peak 
response due to earthquake loading.

Process:
1. Perform modal analysis to obtain mode shapes and frequencies.

2. For each mode, read peak displacement/acceleration from a given design 
response spectrum.

3. Compute modal responses using modal participation factor.

4. Combine modal responses using appropriate combination rules:

o SRSS: Square Root of the Sum of the Squares
o CQC: Complete Quadratic Combination (for closely spaced modes)



This method is widely used in seismic codes (IS 1893, ASCE 7, etc.) for practical 
design.

11.18 Base Shear Calculation in MDOF Systems
Base shear is the total lateral force induced at the base of a structure due to 
seismic activity.

Steps:
1. Compute modal responses using response spectrum method.
2. Compute shear force in each storey using modal contributions.
3. Total base shear is obtained by combining modal shear forces.

Importance:

 Used for seismic design and detailing.
 Ensures foundation and structural components are adequately sized.

11.19 Coupled Lateral-Torsional Vibrations
In irregular or asymmetric buildings, lateral vibrations can couple with torsional 
modes, leading to complex behavior.

Causes:
 Eccentricity between center of mass and center of stiffness.
 Plan irregularity or uneven mass distribution.

Effects:
 Torsional amplification of displacements.
 Larger demands on corner columns and beams.

Consideration:
 Must be modeled using full 3D MDOF analysis.
 Earthquake codes (e.g., IS 1893) provide guidelines for torsional irregularity.



11.20 Seismic Design Implications of MDOF Behavior
Understanding MDOF response helps ensure:

 Proper estimation of lateral drifts and floor accelerations.
 Realistic modeling of base shear and internal forces.
 Safer and cost-effective seismic design.

Designers use:

 Dominant mode-based design for regular buildings.
 Multi-mode or time history methods for complex structures.
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