
Chapter 12: Two Degree of Freedom System

Introduction
In structural dynamics and earthquake engineering, most real-world structures
respond in multiple modes during seismic events. While single degree of freedom
(SDOF) systems provide essential understanding, they are often insufficient to
capture the dynamic characteristics of complex structures like frames, bridges,
and towers. A two degree of freedom (2-DOF) system serves as the next
logical step in approximating multi-degree systems. This model helps in analyzing
coupled modes of vibration, resonance, and modal participation. Understanding
2-DOF systems provides deeper insights into modal analysis, mode shapes,
and natural frequencies, which are crucial for earthquake-resistant design.

12.1 Concept of Two Degree of Freedom System
A 2-DOF system is defined as a dynamic system that requires two independent
coordinates to describe its motion completely. These systems typically consist
of two masses connected by springs and/or dampers, each capable of
independent translational or rotational movement.

Example Systems:

• Two-story shear building
• Two-mass torsional vibration system
• Rigid beam supported by two flexible supports

Let the displacements of the two masses be x1(t) and x2(t).

12.2 Free Vibration of Undamped 2-DOF Systems
For an undamped system with two masses m1 and m2, and stiffnesses k1, k2,
and coupling stiffness k12, the equations of motion are:

m1ẍ1 + k1x1 + k12(x1 − x2) = 0

m2ẍ2 + k2x2 + k12(x2 − x1) = 0
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Matrix Form:

Mẍ + Kx = 0

Where:

M =
[
m1 0
0 m2

]
, K =

[
k1 + k12 −k12

−k12 k2 + k12

]
, x =

[
x1
x2

]

12.3 Natural Frequencies and Mode Shapes
To solve the homogeneous system:

Mẍ + Kx = 0

Assume harmonic motion:

x(t) = Φeiωt

Substitute into the equation to obtain:

(−ω2M + K)Φ = 0

This is a standard eigenvalue problem:

det(K − ω2M) = 0

Solving this gives two natural frequencies: ω1, ω2. The corresponding eigenvectors
give the mode shapes ϕ1, ϕ2.

12.4 Orthogonality of Mode Shapes
If ϕ1 and ϕ2 are the normalized mode shapes, they satisfy the orthogonality
condition:

ϕT
i Mϕj = 0 for i ̸= j

ϕT
i Kϕj = 0 for i ̸= j

Orthogonality simplifies modal analysis by decoupling the equations of motion
when transformed into modal coordinates.
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12.5 Forced Vibration and Modal Analysis
When subjected to an external force F(t), the system becomes:

Mẍ + Kx = F(t)

Using modal transformation:

x(t) = Φq(t)

where q(t) are the modal coordinates, and Φ is the mode shape matrix.

The transformed equation:

q̈ + Ω2q = ΦT F(t)

Where Ω is the diagonal matrix of natural frequencies.

Each modal equation is uncoupled, allowing individual analysis.

12.6 Damped 2-DOF Systems
When damping is included, the equations of motion become:

Mẍ + Cẋ + Kx = 0

Where C is the damping matrix. If damping is proportional (Rayleigh damp-
ing):

C = αM + βK

Modal transformation still results in decoupled equations with damped response.

12.7 Response to Earthquake Ground Motion
When the base is subjected to ground acceleration ẍg(t), the relative motion
equations become:

Mẍ + Cẋ + Kx = −Mrẍg(t)

Where r is the influence vector (usually [1, 1]ˆT).
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Using modal analysis:

q̈i + 2ξiωiq̇i + ω2
i qi = −Γiẍg(t)

Where Γi is the modal participation factor:

Γi = ϕT
i Mr

ϕT
i Mϕi

The total response is the superposition of modal responses.

12.8 Coupled Lateral-Torsional Vibration in 2-DOF
In structures like bridges or buildings with eccentric mass or stiffness, lateral
and torsional vibrations may couple, forming a 2-DOF system:

• One DOF for lateral translation
• One DOF for torsional rotation

Such coupled systems are crucial in asymmetric buildings where eccentricity
between the center of mass and stiffness causes torsional amplification.

12.9 Numerical Example
Consider a 2-DOF system with:

• m1 = m2 = 1000 kg
• k1 = k2 = 20000 N/m, k12 = 10000 N/m

Form the mass and stiffness matrices, solve the eigenvalue problem, find:

• ω1, ω2 (natural frequencies)
• Corresponding normalized mode shapes
• Use modal superposition for dynamic response

This exercise reinforces practical understanding of 2-DOF dynamics.

12.10 Importance in Earthquake Engineering
• Multi-story structures behave like MDOF systems. 2-DOF is a simple

yet insightful model.
• Helps understand modal interaction, resonance, and mode domi-

nance.
• Basis for seismic analysis in response spectrum and time history methods.
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• Essential for design of tuned mass dampers (TMDs) and base isolation
systems.

Sure! Continuing from Section 12.10, here are the remaining essential topics of
the chapter, written in full detail and depth, just as you'd expect in a standard
university textbook for Earthquake Engineering:

12.11 Mode Coupling and Beating Phenomenon
When the two natural frequencies of a 2-DOF system are close to each other and
the system is excited by a force that contains components near both frequencies,
mode coupling may occur. This leads to a beating phenomenon, where the
energy continuously transfers between the two modes.

Beating Characteristics:

• Appears as a modulated vibration with alternating high and low amplitudes.
• Especially observed in free vibration when both modes are excited with

similar amplitudes.
• Physically important in assessing vibration fatigue and resonance

amplification in bridges and tall buildings.

Mathematically, if:

x(t) = A1 cos(ω1t) + A2 cos(ω2t)

Then for ω1 ≈ ω2, beating results in:

x(t) ≈ 2A cos
(

ω1 − ω2

2 t

)
cos

(
ω1 + ω2

2 t

)

12.12 Modal Superposition for Earthquake Analysis
In real-world applications, especially in seismic design, the modal superposi-
tion method allows solving the dynamic response of structures using:

1. Calculation of modal responses (SDOF-like response for each mode).
2. Superposition of modal responses to get total system behavior.

Steps:

1. Find mode shapes ϕi and frequencies ωi.
2. Calculate modal participation factors Γi.
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3. Solve for modal response qi(t) using the ground motion ẍg(t).
4. Compute total displacement:

x(t) =
2∑

i=1
ϕiqi(t)

This method significantly reduces computational effort compared to solving the
full system directly.

12.13 Response Spectrum Analysis for 2-DOF Systems
The response spectrum method is a widely used tool in earthquake engi-
neering for estimating the maximum response of structures subjected to ground
motion. For 2-DOF systems:

• Each mode is treated independently.

• Peak modal responses are computed using the design spectrum.

• Modes are combined using techniques like:

– SRSS (Square Root of the Sum of Squares)
– CQC (Complete Quadratic Combination) – when modes are

closely spaced.

Equation:

xmax =
2∑

i=1
ΓiϕiSa,i

Where Sa,i is the spectral acceleration for mode i.

12.14 Vibration Control using TMDs (Tuned Mass
Dampers)
A tuned mass damper is often modeled as a 2-DOF system where one of the
masses represents the structure and the second represents the damper.

Design Considerations:

• The damper's natural frequency is tuned to the dominant mode of the
main structure.

• Proper tuning reduces the peak displacement and acceleration during
seismic excitation.
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• Widely used in skyscrapers, chimneys, and towers.

12.15 Practical Applications of 2-DOF Systems in Civil
Engineering

Structure Type Equivalent 2-DOF Model Description
Two-story RC frame Masses at floor levels, springs as story

stiffness
Bridge piers with top deck Deck mass and pier flexibility as

lumped parameters
Base isolated buildings One DOF for superstructure, second

for base movement
Asymmetric buildings Translational + torsional DOF due to

eccentricity

These simplified models help in understanding dynamic characteristics, res-
onance risks, and retrofit strategies for existing structures.

12.16 MATLAB/Computational Implementation
Most engineering analysis today involves computational tools. A typical MAT-
LAB script for analyzing a 2-DOF system includes:

1. Defining M, K
2. Solving the eigenvalue problem
3. Plotting mode shapes and natural frequencies
4. Simulating response to harmonic or earthquake base excitation

% Example: 2-DOF system analysis
M = [1000 0; 0 1000];
K = [30000 -10000; -10000 30000];
[V, D] = eig(K, M);
omega = sqrt(diag(D));
phi = V;

% Mode shape plot
figure;
plot([0 phi(1,1)], [0 1], '-o'); hold on;
plot([0 phi(2,1)], [0 2], '-o');
title('Mode Shapes');
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12.17 Limitations of 2-DOF Models
While useful, 2-DOF systems have their limitations:

• Cannot capture higher-mode effects in tall or flexible structures.
• Not suitable for irregular geometry or nonlinear material behavior.
• Over-simplification may lead to underestimation of seismic demand.

For such cases, multi-degree of freedom (MDOF) or finite element models
(FEM) are necessary.
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