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Hello everyone, welcome to tutorial number 8. So, we start with question number 1 where we 

want to prove that you take any simple graph G with 6 nodes, either the complete graph 3 ⊆

 or the complete graph 3 ⊆  . So, let me first define what exactly is the complement of a 

graph in general.  

 

So, the complement of a graph G is a graph which has the same vertex set as the vertex set G. 

And the edge set of  is complement of the edge set of the graph G, namely if you have an 

edge between the nodes vi and vj in the graph G, then the edge will not be present in the  and 

vice versa, where  ≠  . So, that is the general definition of a complement of a graph. And 

we want to prove this property in any simple graph with 6 nodes.  

 

So, if you see closely then this question is equivalent to showing that the Ramsay number 

(, ) or the Ramsay function R(3, 3) is 6. Why so? So, recall what exactly are Ramsay 

numbers? So what we want to prove is that if you take any party where you have 6 guests and 

if each pair of distinct individuals are either friends or enemies. Then, we prove that irrespective 
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of the way, the people are friends or enemies with each other, they are always exist either 3 

mutual friends, namely we can find 3 friends F1, F2, F3 who are mutually friends with each 

other.  

 

That means F1 and F2 are mutual friends, F2 and F3 are mutual friends and F1 and F3 are mutual 

friends or we can always find 3 mutual enemies in the party. At least we can find 3 persons, 

person 1, person 2, person 3 such that p1 and p2 are not friends with each other, 2 and 3 are not 

friends with each other and 1 and 3 are also not friends with each other. So, we can model the 

friendship relation as an undirected graph, where I can say that there exists an edge between 

the person i and person j if and only if they are mutually friends.  

 

If we do that then the friendship status of 6 people in a party, any party can be represented by 

a simple graph with 6 nodes and since we had proved that R(3, 3) = 6, that is equivalent to 

showing this property that we are supposed to prove. You wanted to prove that R(3, 3) is = 6 

is equivalent to showing that if you take the friendship graph, you can always find 3 nodes in 

the friendship graph, such that among those 3 nodes you have edges, you can always find vi, vj 

and vk such that you have the edges between vi, vj, you have the edge between vj and vk and 

you have the edge between vk and vi. Or you have 3 people such that between i and j no edges 

there, between j and k no edge is there and between k and i no edges there in the graph G. If 

no edges are there among these three nodes in the graph G, then in the  graph, you will have 

an edge between the edge nodes vi and vj, the nodes vj and vk and the nodes vk and vi.  

 

So, that is equivalent to showing that K3 is present or 3 ⊆  graph. So, this question we have 

already solved in principle. It is just that we are now getting a graph theoretic interpretation of

the friendship relationship.  

(Refer Slide Time: 04:31) 

690



 

Now let us go to question number 2 here. We want to prove or disprove the following; If in a 

simple graph G, (G – vi) is disconnected for every vertex vi in the graph, then it implies that 

the graph G is also disconnected. Or equivalently here we want to check that if in the simple 

graph G, every vertex vi is an articulation point or cut vertex, then the graph G is disconnected 

because if (G – vi) is disconnected that means the vertex vi is an articulation point.  

 

So, we want to check whether this property is true or not. To prove this, let us prove a related 

statement or we prove a relative claim. So the claim is the following; If you take any connected 

simple graph then they always exist at least two vertices, none of which is an articulation point, 

this always holds in any connected simple graph. I can always guarantee the presence of two 

vertices which are not cut vertices, of course, the number of vertices in the graph is greater than 

= 2 because if the graph is just one vertex then this claim does not make any sense.  

 

How exactly do we prove this claim? So, you focus on the nodes u, v in the graph G which are 

farthest, that means the distance among the nodes u and v is the maximum in the graph. That 

means you take all pair of nodes u, v find out a distance among those nodes u, v. And among 

all the (u, v) pairs, you focus on the (u, v) pair such that the distance is maximum in the graph 

G. My claim is that the nodes u as well as the node v are not articulation points, they are not 

cut vertices and this can be proved using a proof by contradiction.  

 

So, on contrary, assume that say the vertex v is a cut vertex. So, this is without loss of generality 

the same argument can be applicable if we assume on contrary that the vertex u is a cut vertex. 

So, if the vertex v is a cut vertex, that means by deleting the vertex v, my graph gets divided 
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into two connected components C1 and C2. And this means that the vertex v has degree 2 and 

it will have at least one neighbor say, w in the component C2.  

 

Because if the degree of the vertex v would have been just one that means if the only neighbor 

of the vertex v would have been this vertex x in the component C1 and there is no neighbor w, 

then how can it be possible that deleting v disconnects the graph was split the graph into two 

component C1 and C2? So, since the deletion of v splits your graph into two connected 

components, that means there is something, some node w in C2 such that v is having an edge 

to that node w in the connected component C2.  

 

But that gives you a contradiction to the fact that the nodes u and v are the farthest nodes in 

your graph G, because now you can see that a distance between the node u and w is more than 

the distance between the nodes u and v. That means by nodes u, v are not the farthest nodes in 

the graph, but it is rather the node u and w which are the farthest nodes in the graph. So, we get 

a contradiction and that proves that whatever we assume about the vertex v is not true, so we 

assume that a vertex v is a cut vertex, which is not true.  

 

So, now coming back to the question, the question is equivalent to saying that can we have a 

simple connected graph where every vertex is a cut vertex? And that is not possible, because 

that is precisely what we proved in this claim. We proved in this claim that if at all your graph 

is a connected simple graph there are definitely and the number of nodes is greater than = 2, 

then they are definitely exist two vertices vi and vj such that neither vi is an articulation point 

nor vj is an articulation point, it is not possible.  

(Refer Slide Time: 09:25) 

692



 

Let us go to question number 3. So here we have to find an unknown graph G, the graph G is 

not given to you but it is just given that it is a simple graph. And since the graph G is not 

known, we also do not know its incidence matrix B, but we know that incidence matrix B is 

such that the product of the incidence matrix and its transpose is this matrix. So, we have to 

basically recover the original graph G from the product of the incidence matrix and its transpose 

that is given to us. 

 

Of course, a naive we have to intact will be you try all possible values of, for all cases of the  

matrix and the  matrix and multiply them and check whether your guess gives you this value 

of  matrix or not. We will not do that. We will argue and try to get back the information 

regarding the graph G. So, imagine that your number of vertices in the graph is n and the 

number of edges in the graph is m.  

 

So, the incidence matrix of the unknown graph will be an n cross m matrix, so I am denoting 

the unknown incidence matrix by this notation. So, b11, b12, b1m they are the unknown Boolean 

values, so remember each entry of the incidence matrix will be {0, 1}, either 0 or 1. And if the 

edge e is between the vertex vi and vertex vj, then in the incidence matrix if we focus on the 

eth row, then if we focus on the row number vi and if you focus on the row number vj and the 

column number e.  

 

Then under the column e in the ith row we will have the entry 1 and the jth entry we will have 

entry 1 and all other entries will be 0. That is the property of your incidence matrix. Now, we 

do not know as of now which entries are 0, which entries are 1. Now it is easy to see that the 
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jth row of the incidence matrix B will become the jth column in the transpose of the incidence 

matrix and that comes from the property of the transpose of a matrix. And what will be the (i, 

j)th entry, when we multiply the matrix B with the matrix B transpose? 

 

So, how exactly the (i, j)th entry of the product of B and B transpose would be computed? We 

would have taken the ith row and we would have multiplied the ith row with the jth column 

component wise namely, bi1 would have been multiplied with bj1. And then added to the product 

of bi2 and bj2. And like that you would have multiplied the entry number bim, the entry number 

bjm, and if we had all these things that will give the (i, j)th entry of the matrix .  

 

And we are given the value of . So now what I can say is the following; If I take any (i, 

j)th entry where i is not = j, then the (i, j)th entry in the product matrix  will be 1 if and 

only if the vertex vi and the vertex vj are incident on a common edge. That means they are the 

endpoints of an edge. This is because we already argued that this is our (i, j)th entry, the (i, j)th 

entry is one and only if one of the values in this sum of m values is what because of none of 

the values.  

 

So, if the first product in this sum is 0, and if the second product in the sum is also 0 and like 

that if the mth product in the sum is also 0 and how come the (i, j)th entry is one? So, (i, j)th 

entry is 1 only if you have bi1 = bj1 = 1, if that is the case that means the vertex i and vertex j 

they are the endpoints of the edge number 1 or bi2 should be = bj2 should be = 1, which implies 

that the ith vertex and jth vertex, they are the endpoints of the edge number 2, and so on.  

 

So, if I focus on the (i, j)th entry, where i and j are distinct and checking whether they are 1 or 

0, we can identify whether the vertex vi and vj are the endpoints of an edge 1. And you have 

that information available in the product matrix . And if I take the (i, i)th entry, that means 

if I substitute j = i here and focus on the (i, i)th then the (i, i)th the product matrix will be this 

expression and this is nothing but the degree of the vertex vi.  

 

So, you have all the information available now about the graph G in the product matrix. So 

your graph G is such that the degree of 1 is1, the degree of vertex 2 is 2, the degree of vertex 3 

is 4, the degree of vertex number 4 is 2 and the degree of vertex number 5 is 3 and the endpoints 

of each edge is also available by focusing on the (i, j)th entry in this matrix, where i and j are 
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distinct. So, this is how you can get back all the information about your unknown graph from 

the product matrix .  

(Refer Slide Time: 15:57) 

 

So, now let us go to question number 4. In question number 4 we have given the definition of 

a tree. So, a tree is a connected acyclic graph, that means it is a graph which is connected, that 

means you take every pair of distinct modes, there will be a path and it is acyclic, that means 

the graph has no cycle. We have to show that if you take any tree with n nodes, then the tree 

has n - 1 edges. So there are several ways to prove this theorem we will use proof by induction, 

induction on the number of nodes n.  

 

So, the statement is obviously true for the base case namely for a tree which has only 1 node. 

So if you create a tree with 1 node then it will have 0 edges. Assume the inductive hypothesis 

is true, that means assume the statement is true for all trees consisting of up to k nodes. And 

now we are going to the inductive step, where we are going to consider an arbitrary tree 

consisting of k + 1 nodes. And we focus on any arbitrary edge with endpoints u and v in the 

graph G or the tree G.  

 

My claim is that the edge (u, v) is a cut edge in the tree and this is true for any edge in the tree. 

You take any edge the claim means it will be a cut edge. That means if you remove the edge 

connecting the nodes u and v then your tree G gets splitted or divided into two connected 

components. If that is not the case, that means even if after deleting the edge between u and v, 

your tree remains connected that means there are still some way to get back to the node u from 

the vertex u even if this edge is not there between u and v.  
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Then we get the conclusion that there is a cycle in the graph but that goes against the definition 

of a tree. So, now if my edge (u, v) is a cut edge, I will get two components C1 and C2. I do not 

know how many nodes are there in C1 and how many nodes are there in C2? So, I can assume 

that they have n1 and n2 number of nodes respectively. But what I know is that if I sum up the 

number of nodes in C1 and the number of nodes in C2, that will give me the total number of 

nodes that I have in the tree, which is k + 1.  

 

And I also know that both n1 as well as n2 are upper bounded by k. This is because C1 and C2 

are disjoint and both of them are non empty, ≠ . So, since n1 and n2 is less than = k and both 

C1 is connected as well as C2 is connected, and I do not have any cycle in C1 and I do not have 

a cycle in C2. that means both C1 as well as C2 are individually trees with n1 and n2 nodes 

respectively.  

 

So, as per the inductive hypothesis, I can apply the inductive hypothesis and claim that the 

number of edges in C1 is n1 - 1, the number of edges in C2 is n2 – 1. And that gives me the total 

number of edges in the original tree G is just one more than the number of edges that I have in 

the tree C1 and C2. This is because the only edge which I have touched or removed is the edge 

between the nodes u and v and that proves the inductive step.  

(Refer Slide Time: 20:06) 

 

So, now let us go to question number 5. And question number 5, we define what we call as a 

self-complementary graph. So, a graph G is called self-complementary if it is isomorphic to its 

complement. So, for instance, this is a self-complementary graph with 4 nodes. I am not 
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labeling the nodes but you can check here that the graph G and the graph , they are isomorphic 

to each other and hence the graph G is self-complementary here.  

 

So, we want to prove here a very interesting property about self-complementary graphs, we 

want to prove that if your graph is a self-complementary graph, then the number of nodes in 

the graph is either a multiple of 4 or it is some 4 times k + 1. That means either the number of 

vertices is completely divisible by 4 or if you divide the number of vertices by 4 then you will 

get the remainder 1 that is what we want to prove here.  

 

At least you can check that this statement is true for the G and G’ that we have here; the number 

of vertices in G is 4 and 4 is visible by 4. So, how do we prove this? Since the graph G is self-

complementary that means the number of edges in G and the number of edges in  have to be 

the same. So, the cardinality of the edge set E and edge set E complement will be the same and 

I know that for any graph it may not be self-complementary.  

 

If you take any graph then the total number of edges in E and E complement is the same as the 

product of the number of vertices and the number of vertices minus 1 over 2. Because all the 

edges which are in G they would not be in  and vice versa and if you take the union of the 

graph G and the graph , you will get a complete graph with the number of nodes same as the 

number of vertices in the graph G or .  

 

So, if you take  ∪  then you get the complete graph with n nodes, where n is the number of 

vertices in the graph G. So, remember the number of vertices in G and  will remain the same, 

you do not take complement with respect to the vertex set, the complement is respect to the 

edge set. So, we know these two facts, one fact that is true for every self-complementary graph 

and another fact which is true for every graph.  

 

Based on these two things, if I substitute that cardinality of E is same as cardinality of E 

complement then I get that two times the cardinality of E is = || + || = ||∙(||−1)

2
 

 which shows that the product of the cardinality of the vertex set and the vertex set minus 1 is 

a multiple of 4 or it is divisible by 4. Now you have 2 quantities here a and b and what are the 

prime factors of 4? 2 and 2, it turns out that you cannot have both a as well as b simultaneously 

divisible by 2.  
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Because one of the quantities is odd, then other quantity will be even. a and b you have you 

cannot have to consecutive numbers both of them simultaneously to divisible by 2 and but 

since I know that the product of a into b is divisible by 4, then that is possible only if either a 

is divisible by 4 or b is divisible by 4. Then both a and b would have been individually divisible 

by 2, then I cannot claim this fact here.  

 

But since I know that both a and b cannot be simultaneously divisible by 2, but the overall 

product a times b is divisible by 4 then that is possible only if a times b is divisible by 4. It only

then either a is divisible by 4 or b is divisible by 4 and that shows what we wanted to prove 

here. Now in the same question we want to draw a self-complementary graph with a vertex set 

which has 4k number of nodes.  

 

So, you are given a value k, k could be anything, it could be 1, 2, 3, 4 given the value of k you 

have to draw a self-complementary graph, which has 4 times k number of nodes. So, if k is = 

1, then this is the self-complementary graph, but you cannot draw a distinct self-complementary 

graph for each and every value of k, I just want to draw a general graph which unifies all self-

complementary graphs with 4k number of nodes, so how do we do that?  

 

So, what I do here is I take four groups of k nodes and those four groups of k nodes are disjoint.  

So this is my first group, this is my second group, this is my third group and this is my fourth 

group. Now this group of k nodes denotes a complete graph with k nodes, that means you have 

an edge between every pair of distinct nodes in this group and similarly this copy of k nodes 

denotes a complete graph with k nodes.  

 

And this group ̅ denotes an incomplete graph of k nodes, that means it is a collection of k 

nodes with zero edges and similarly this collection of k nodes have zero edges. Now what I do 

is the following my G is the following my graph G which is a self-complementary graph with 

four k nodes is the following, so of course my graph G will be now having 4k nodes because 

the total number of nodes are k + k + k + k, so 4k nodes.  

 

Now what I am doing here is the following; So, this thick edge between this group of k nodes 

and this group of k nodes denotes that if you have the nodes v1 to vk here and if you have the 

698



nodes vk + 1 to v2k here this collection, then you have an edge between every node in this group 

and every node in this group. That is what is the interpretation of this thick edge. Similarly you 

have an edge between every group between every node in this group and every node in this 

group.  

 

That is interpretation of this thick edge and similarly you have an edge between every vertex 

in this group and every vertex in this group, that is interpreted by this thick edge, that is 

interpretation of this thick edge, so that is my graph G. Now what will be the complement of 

this graph G? So, this is my graph G, so my graph  will also have 4k number of nodes but 

then what will happen is the following.  

 

So, since this group was a group of k nodes with edges between every pair of nodes you will 

still have those k nodes but no edges among any pair of nodes, whereas this copy of k nodes 

will get converted into a complete graph of k nodes. This copy of a complete graph of k nodes 

will get converted into a collection of k nodes with no edges and this copy of a graph with k 

nodes and zero edges gets converted into a complete graph with k nodes. And then since these 

edges are present in G, they will not be present here anymore.  

 

So, that is why these edges have vanished and similarly you can see the edges which were not 

there in G there will be now present in  and vice versa. The edges which were not there in G 

they will be present in , so there were no edges between this group and this group in G, but 

now those edges are here and so on. So, that is how your  will look like, so it is easy to see 

that your graph  is isomorphic to the graph G.  

 

I can interpret or rearrange or redraw the graph  in the same form as the graph G. I just have 

to orient it a little bit, that is all, say if I orient this graph rotate, this graph little bit like this, 

then I get the same structure as the graph G and that shows that my graph G and G is self-

complementary because it is isomorphic to its own complement.  

(Refer Slide Time: 30:23) 
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In question 6, we have to either prove or disprove the following; If the graph H is a subgraph 

of G then can we say that ̅ is also as the graph of . Well, the statement is not necessarily 

true. A very simple counter-example is the following: here you have a graph H and a graph G, 

the graph H is a subgraph of G, but if you take ̅, in ̅, the only the edge will be between the 

nodes 1 and 3 because the edge is between 1 and 3 was not there. Where in  there will not be 

any edge, so clearly H prime or the graph ̅ is not a subgraph of the graph . So, this statement 

is not necessarily true.  

(Refer Slide time: 31:18) 

 

Then let us see question number 7 and 8: a simple graph is called regular if the degree of every 

vertex is the same. And if the degree of every vertex in a simple graph is some value r, then we 

call such a graph an r-regular graph. So, here you are given a few graphs and we have to find 

out which of these graphs are regular and which are not. so Kn is a regular graph because the 
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complete graph with n nodes in such a graph the degree of every vertex is n - 1, so it is regular.  

 

The cycle graph with n nodes is also regular because if you take the degree of every vertex, it 

will be 2. But your wheel graph Wn is not a regular graph, because it is the central node which 

has a huge degree compared to the other vertices of the graph. Whereas if you take the 

hypercube graph, we can prove that it is a regular graph and the degree of every vertex will be 

the same.  

 

Now what we have to do in question 8 is the following; You are given a value of k. You have 

to draw a simple regular graph where the degree of every vertex is 2 times k + 1 such that the 

graph has a cut edge. You have to give the construction of a general graph. So, what we can do 

here is the following; we take two copies of a complete bipartite graph. So we take one copy 

of a complete bipartite graph where I have 2k nodes in the individual sets in the bi-partition.  

 

So, 2k number of nodes in v1 and 2k number of nodes in v2 and I have an edge between every 

vertex in v1 and every vertex and v2, that is denoted by this arrow symbol, bi-implications 

symbol. Because the graph will look very ugly if I keep on adding edges between every vertex 

in v1 and every vertex and v2. So, to avoid making it look ugly I just denote the existence of an 

edge between every node in v1 and every node in v2 by this bi-implication.  

 

And similarly, I take another copy of a complete bipartite graph and say I call the bipartition 

of this copy of the complete bipartite graph as C1’ and the C2’ and again I have an edge, I have 

an edge between every node in v1’ and every node in v2’. So, this is my v1, v2, v1’, v2’. Now I 

need to ensure that my graph has a cut edge. So I try to introduce a cut edge. This will be my 

overall cut edge and what I do here is, so let me call the end points of this cut edge as a and b. 

I connect the node a to every vertex in the subset v2. So, that will ensure that the degree of the 

vertex a is 2k + 1, why 2k + 1? Because it will be connected to all the vertices of v2, so it gets 

degree 2 k through that and it is also having an edge to the node v so that ensures that a degree 

of a is 2k + 1.  

 

Using the similar argument, I can say that a degree of b is also 2k + 1 because b has a neighbor 

in every vertex with v in v1’, so through that it gets 2k degree and b is also a neighbor of the 

node a, so an additional degree, so the degree of b is also 2k + 1. Now all the vertices of v2 will 

have degree 2k + 1. This is because you take any vertex of v2, say the first vertex, so it is a 
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neighbor of a degree 1 and it is having an edge with every node in v1.  

 

So, through that it gets the degree 2k, so total degree 2k + 1. Due to the same argument each 

node in v1’ also have degree 2k + 1 because you take any node in v1’, it is having an edge with 

every node in v2’, so that it gets degree 2k and the same node is also having an edge with the 

node b, so through that it gets one more degree so total degree 2k + 1. But we also need to 

ensure that every vertex in v1 and every vertex in v2’ also gets degree 2k + 1.  

 

Till now we have ensured that the degree of a is 2k + 1, we have ensured that the degree of b 

is 2k + 1, we have ensured that every vertex in v2 has degree 2k + 1 and we have ensured that 

every vertex in v1’ has degree 2k + 1. But right now the degree of every vertex in v1 is 2k and 

similarly the degree of every vertex in v2’ is 2k. I need to increase the degree of each vertex in 

v1 by 1 and each I have to increase the degree of each vertex in v2’ by 1 as well and that is 

simple.  

 

What we can do is the following; Take the vertex set v1, you pair them into k pairs, you take 

the first two nodes and add an edge between them, then you take the third and the fourth note 

and add an edge between them and like that you take the fifth and sixth node and add an edge 

between them and so on. So, that will ensure that the degree of every vertex in v1 becomes 2k 

+ 1, and if you do the similar process for v2’ as well. That will ensure that the degree of every 

vertex in v2’ becomes 2k + 1. So, with that I conclude the tutorial number 8. Thank you! 
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