
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 02

Lecture - 19

Representing Graphs

So, we have seen that graphs are very useful mathematical structures for

modeling problems. But, when we write an algorithm to solve a graph theoretic problem,

we need

a way to represent and manipulate the graph in our algorithm. So, we will look at that in

this lecture.

(Refer Slide Time: 00:15)

So, recall that a graph is a set of vertices or nodes V connected by a set of edges E. We

can have two types of edges, undirected edges and directed edges. An undirected edge is

drawn as just a line between two vertices and it represents the fact that v and v prime are

connected. It does not matter whether we call this edge v comma v prime or v prime

comma v, there is only one edge.

On the other hand in a directed graph, we actually associated direction with an edge. So,

we could draw an edge from v to v prime and this we would write in our edge set as a

pair v comma v primes saying that the start vertex is v and the end of the edge is v prime.

And this is not the same as having an edge from v prime to v which will be written as v

prime comma v.

So, directed graphs the order of the vertices when you mention the edge matters, then the

169

undirected graph is just the pair of vertices, it does not matter whether we think of it, it is

v to v prime or v prime to v, it is just a connection between these two pairs of vertices.

(Refer Slide Time: 01:22)

So, we saw two typical problems involving finding a route, which can be represented for

both undirected and directed graphs. So, in a directed graph, we would looking for path

from v 0 to v 5, such that each pair v 0, v 1; v 1, v2 etcetera, these are directed edges in

our graph.

(Refer Slide Time: 10:40)

At the same time, we can make the same graph undirected and again we are looking for a

path, where we start at v 0 and every adjacent pair v 0 to v 1, v 1 to v 2 is an edge, such

170

that we finally end up in the target vertex v 5.

(Refer Slide Time: 01:53)

So, the problem that we have abstractly, let us stick to undirected graphs, since that we

are given at this point an undirected graph and we are given a source vertex v s and a

target vertex v t and we asked, whether there is a way to go from v s to v t in this graph.

Now, what we did in the previous graph and what we can do as a human beings is to take

a look at the graph and see, if you can visually identify such a path, just see v s and v t

are connected.

But, when we write an algorithm to manipulate a graph, how do we get the algorithm to

look at the picture. So, for us a graph is a picture and we can easily look at the picture, if

the graph is not very complicated and try to understand the situation. But, how do we

make this picture available to an algorithm? We need a way to represent this picture that

gives the graph as input to our algorithm.

171

(Refer Slide Time: 02:42)

So, let us make some assumptions, in any graph that we consider, there is only be a finite

set of vertices. So, if there are n vertices to simplify life, let us just name these vertices 1,

2 up to n. So, our vertices are always going to be 1, 2, 3, 4 up to n. So, therefore now an

edge is a pair of numbers i comma j. So, the first representation we can have is to just

record which pairs i and j are connected. So, this is called an adjacency matrix, we say in

this matrix A i j is 1, if and only if i j is an edge.

(Refer Slide Time: 03:24)

So, when we write such a matrix, then if we take a graph like we had before, we would

now rename the vertices 1 to 3 up to 10, because there are actually 10 vertices in this

graph and then we would write this matrix which says for instant there is an edge from 1

172

to 3 and therefore, the entry A 1 3 is 1. There is no edge from 1 to 5 and therefore, the

entry A 1 5 is 0.

So, in this way for every edge that we find in the graphs, say for example, A 4 5, we will

find an entry in the graph which says A 4 5 is 1. Now, remember that this is undirected.

So, if there is an edge 5 4 5, there is also an edge 5 4 and so we will see that actually

there is a matching edge 5 4. So, this graph is actually this symmetry, so it is actually to

be symmetric across this diagonal. So, if I see a 1 above the line, I will see a 1 below the

line, because 8 9 is as same as 9 8 as for as our undirected edges. So, this is an adjacency

matrix.

(Refer Slide Time: 04:20)

So, now what can we do with the adjacency matrix? Well, one thing we can do for

example is find all the neighbors all of a vertex. Suppose, if we want the neighbors of a

vertex i, then we want to look at the row i and look at all the entries 1 in that row. For

example, we want to look at the neighbors of vertex 4, we look at the row 4, then 4, the

entry 4 comma 1 indicates whether or not 4 1 is an edge. It is, so we get 1 of our vertex,

then we walk for the… And then the next one is a 4 comma 5, so 5 is a neighbor.

And then, the next one is an 8, so 8 is a neighbor, so in order to find the neighbors of a

vertex i, we go to the row labeled i and we scan the row from left to right and each one

that we find, the corresponding column is a neighbor.

173

(Refer Slide Time: 05:09)

Now, how do we find the path? Then, we can now look at neighbors and the neighbors of

neighbors and so on. So, we start with the source vertex in our problem, if you look at

the numbering, let me give, New Delhi corresponded to the vertex labeled 1 and

Trivandrum was the labeled vertex labeled 10. And we wanted to know, whether we can

get from vertex 1 New Delhi to vertex 10 Trivandrum.

So, what we do is, we start at vertex 1 and we know how to find the neighbors of 1. So,

we will say that every vertex any neighbor of 1 can be reached from one by one. So, we

start with the vertex 1 which we have already started, we can reach, because we start

there. Now, we scan it is neighbors and then we find that there these 3 neighbors, 2, 3

and 4. So, therefore now we can conclude that if you start at 1, we can definitely reach 2,

3 and 4.

So, let us color these rows also green, so now we have indicated that in one step from 1,

we can reach 2, 3 and 4. Now, anything that we can reach from 2, 3 and 4 can also be

reached from 1. So, we now focus one by one to the neighbors that we have already

explored and look at their neighbors. So, we moved down to the neighbors of 2. So, 2 has

only 2 neighbors, 1 and 3 and it turns out that 1 and 3 have already been marked as being

reachable from 1, we do nothing about this.

So, the cities reachable from 2 do not add any information to our problem. So, you move

on to 3, likewise 3 can reach 1 and 2, both of which I have already been listed as visited

or which can be reached from 1. So, we can again skip over to 4, because 3 has nothing

174

new to tell us. Now, when we reach vertex 4, it has something new to tell us, because

now from 4, it says you can reach 1 of course, we will know, then we can also reach 5

and 8.

So, now we will now, in our representation we will indicate that 5 and 8 are colored

green to indicate that these are also reachable from 1 by an indirect path, I can go from 1

to 4 and then from 4 to 5 and 8. So, I have already processed 1, 2, 3 and 4, so the next I

look at for vertex 5 to see 5 can give us any new neighbor. So, you look at 5 and now 5

has a neighbor we have already seen 4, but it has a new neighbor 6 and other new

neighbor 7, so if I process 5, I get 6 and 7.

Now, I can look at any of 6, 7 or 8, so let us look at 8. So, 8 has neighbors 4, which I

have already seen, 6 which I have already seen, but it has new neighbor 9, which I have

not seen. So, I add 9 to the list of neighbors which can be reached eventually from 1. And

now if I look at 6, I find that 6 can reach 5, 7, 8 and 9; all of which are already known to

be neighbors are reachable from 1.

So, I do not have any new information, likewise when I go to 7, I can reach 5 and 6,

which I have already know are reachable. So, there is no new information. And finally,

the vertex which are not yet examined is 9, so from 9 I can reach 6 which I know, 8

which I know and there is a new vertex 10, so I can reach 10 from 9, so I mark 10 and

once I marked 10, my problem is solved. I have found that there is a way to go from 1 to

10, but systematically expanding the set of neighbors I can reach one level at a time.

So, this give us some algorithm, we will make this algorithm more precise as we go long,

but you can see that using this representation as an adjusting C matrix, we can take this

matrix and use it to actually explore the problem that we have in hand and make it into

assign as a reasonable procedure which we can execute effectively.

175

(Refer Slide Time: 08:50)

So, to make this algorithm more precise, we need to make this algorithm more

systematic, we have to keep track of the vertices which have been visited, so that we do

not keep exploring the same vertex again. So, we do not want to keep going around in

circle and doing the same problem again and again. So, it will turn out that there are two

fundamental strategies to solve this particular problem which is one of the most basic

problem in graphs, which will find out, what is connected to what.

So, the strategy that we executed is what is called breadth first, that is we first explore all

the neighbors of the starting vertex from all the neighbors of these things which are one

step away, all the neighbors that thing that two step away and so on. The other strategy to

go as far as possible in one direction, so you pick one neighbor at starting vertex, then

you pick one neighbor of new vertex, then you pick one neighbor of that new vertex and

so on. And we cannot find a new vertex, then you go back and explore and other

neighbors of previous vertices and so on and this is called breadth first. So, we will see

these algorithms in detail in a later lecture.

176

(Refer Slide Time: 09:50)

So, one of the thing that you can observe is that most of the entries in this matrix are

actually 0. So, remember that if you have n vertices, this matrixes size n square, because

I have n rows and n columns. Now, if you count the number of the edges in an undirected

graph, then each pair of vertices can be an edge, we normally disallows self loops, we

normally do not consider edges from i to i for vertex i. And the number of different pairs

is n choose 2, these are how many ways you can pick two vertices.

So, you pick all the pairs, then it is n into n minus 1 by 2, so this is the basic common

oriented fact. So, we could have about n square edges no more and if you have heard

about n square edges, then many of the entries in the matrix would be 1, but it most

situations the number of edges is much less than n square. So, this is the wasteful

representation in some sense, because we are recording a lot of 0’s in order to capture the

positive information which is in the 1’s.

And also remember that these 1’s are symmetric, so for every 1 about the line I have, so

if I draw this diagonal, that every 1 above the diagonal, I have a symmetric 1 below the

diagonal. So, actually half of this matrix are useless, if I just know this top half is enough

and in this top half I will have mostly 0. So, we can think of another representation,

where we only keep the relevant information at hand.

177

(Refer Slide Time: 11:20)

So, this is what is called an adjacency list, so what we do in an adjacency list is that we

explicitly maintain for every vertex, the list of its neighbors. So, we see that one is

connected to 2, 3 and 4. So, we say that the list connected to the 1 is 2, 3, 4. Similarly, 2

is connected 1 and 3, so we have the list connected to is 1 and 3, so this is the node and

these are the neighbors.

So, now, in this representation, whenever I have node, I just go to that entry for that node

and I look up the list and I can scan it neighbors and I can get it in time proportional to

the number of neighbors of that. So, there is an advantage that I do not want any useless

information, because I am not storing all the 0 is adjacency matrix here, I am not keeping

the norm information which vertex not connect.

178

(Refer Slide Time: 12:12)

So, these two representation have their advantages and disadvantages, in the adjacency

matrix, we need much more space and then, adjacency list, but some questions are easier

to answer an adjacency matrix than in the adjacency list. If you want to know, whether

vertex j is a neighbor of vertex side, we just have to prove one entries in the matrix, we

just check it if A i j is 1.

On the other hand in an adjacency list, if you want to find out j is a neighbor of i, we

need to go to the entry for I and scan the entire list. So, this is similar to the original

discussion we had in the beginning of the sorting module on the difference between

matrix and this. So, here we can probe this entry A i j in unit time, whereas we need

propositional to the number of neighbors of i, to find out whether or adjacent neighbor of

i or adjacency list.

On the other hand, if you want actually find all the neighbors of i, then regardless of how

many neighbours of needed in the adjacency matrix, we have to scan the entire row. So,

there are n vertex in the graph, when even if a node had only 2 or 3 neighbors we will

have to look at all n entries in the row to determined which of these n entries are the

actual neighbors. On the other hand, in an adjacency list as we have seen, we record

exactly those but which a neighbors. So, time to scan the neighbors is directly

prepositional to neighbors. So, if each vertex only a small number of neighbors, then the

adjacency list to quickly give as those neighbors, whereas adjacency matrix you required

scan order n entries to find out the small number.

179

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

