
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 02

Module – 07

Lecture - 15

Quicksort

So, we are now ready to look at another algorithm called Quick sort. So, quick sort was

invented by a computer scientist called Tony Hoare in the early 1960’s; that is about 50

years ago. And Tony Hoare is a very well-known computer scientist and he has

impact one Turing about which is one of the highest achievements awarded for

academic

computer scientist.

(Refer Slide Time: 00:28)

So, what is the purpose of quick sort? Well, the purpose of quick sort is to overcome

some of the shortcomings that we saw in the merge sort. So, one of the things that we

saw in the merge sort is that because of the merge operation, we need extra storage and

so, this makes merge sort a little expensive.

134

(Refer Slide Time: 00:42)

So, we also observed that the reason that we need this extra storage is because we have

in the merge operation that we might be pulling out elements from both sides, when we

have populating the merged array. So, basically some elements in the right might be

smaller than some elements in the left and this is what user results in merging. So, can

we divide everything. So, that this does not happen, everything on the left is smaller and

everything of the right is larger, is it possible to do a divide and conquer in this fashion?

(Refer Slide Time: 01:16)

Well, this is the case, then what we need to do is, we need to put the middle value in the

center. So, supposing we can find the median. So, remember what the median is, the

median is the value such that exactly half the values in the array are bigger and half a

135

smaller. So, now we move everything which is smaller than m to the left half. So, we

have a set of values here which are less than or equal to m and then we have on the right

side something which is strictly greater than…

So, of course, we have to do this shifting, but the claim is that we can do this shifting in

linear time and we will see a way to do this. So, assuming we can do this, pick a value m

which is the median and shift everything smaller than m to the left, then this is roughly

going to be the half point, because m is a value which splits the array into two parts,

those just smaller or half and those bigger or half.

Now, I do this recursive thing, I sort this and I sort this and now remember this no need

to merge, because everything on the left is already smaller than everything on the right.

So, I can just go ahead and assume the array is sorted. So, if I do this, then by the

analysis as for merge sort, I have a recurrence which has t of n is 2 times t n by 2 plus n

and we now this is order n log n.

So, this will give us the same complexity as merge sort, but it will avoid some of the

overheads involved with creating extra space. Because, when I do the recursive call here,

I can easily sort this part in place and this part in place, because I do not need to refer to

the other part at all when I do this solution.

(Refer Slide Time: 02:42)

So, of course, there must be a catch and the catch is how do we find the median? Right at

the beginning of our discussion, we said that one of the reasons that we want to sort is to

do statistical things like find the median. So, if we have sorted the array, then the median

136

value is the middle value, but of course, our goal now is to sort the array. So, we cannot

assume that we have the median, because we have already seen that sorting is an easy

way to find the median. So, it is a kind of the chicken and egg problem, we cannot use

the median to sort.

So, what quick sort Tony Hoare algorithms says, do not necessarily pick the medium,

just picks some value in A and do what we said. So, we pick up this pivot and then you

break it up into two parts, those which are smaller than the pivot and those that are

bigger than the pivot. So, the pivot is just some value and the array, it need not be the

median and we will see that if that is not the median, then this results in some problem in

terms of the worst case complexity, but let us just ignore it.

So, we just pick some value in the array and we take all those value as smaller than that,

move it to the left, all those which have bigger than that move it to the right. And then,

we sort them recursively and then we guaranteed that nothing on the left needs to be

combined with anything on the right after this. So, the resulting array is sorted.

(Refer Slide Time: 03:55)

So, this is quick sort, choose a pivot element. So, for example, you may just pick up the

very first value in the array as implemented. Partition this array into the lower and upper

part. So, the lower part is those which are less than the pivot, the upper part is that which

is greater than the pivot. So, the crucial step is this partitioning, we will see how to do

this partitioning, that is what we see now. Then, we move this pivot here. So, that it is in

the correct place and now we recursively sort this part and this part and we are done,

137

because nothing needs to move.

(Refer Slide Time: 04:35)

So, here is a kind of high level description of the algorithm through an example. So,

supposing this is my array, then I pick the first element at the pivot namely 43. So, with

respect to 43, I now partition this array. So, that everything smaller than 43. So, what are

the elements smaller than 43 here, we have 32, 22 and 13. So, these elements should

come to the left and the elements which are bigger namely 78, 63, 57, 91 should go to the

right.

So, I do this partitioning and how do I do this partitioning, well I kind of… So, I brought

everything to the left and then after this, I recursively sort the left. So, this is no longer

assumed to be sorted it, just I editing smaller than 43, this is not sorted, there are

everything bigger than. Then, recursively if I assuming I can sort it, then I have sorted

the entire array, because now nothing in the yellow side needs to be combined with green

side, the red pivot value separates these two.

So, the first thing that we need to understand is how to do this partition. So, there are two

ways to partition. So, we will look at one in detail and show some code for it and then we

will look at another through an example and you will have to write the code by yourself,

if you are interested. So, here is one way to partition. So, I have start with the pivot

element at the left and now I have this entire range of values to the right which are

unsorted.

So, I will put two indices which I have indicate in this picture with two color pointers, a

138

yellow pointer and a green pointer, this significace will become a little clearer once we

move a couple of steps in the algorithm. So, what we do is that everything to the right of

the green pointer. So, the green pointer indicates the end of the part which has already

been partition. So, anything to the right of the green pointer is un partitioned and the

yellow pointer on the other hand is going to indicate. So, this is going to indicate the

limit of the lower part.

So, I need. So, basically in general I am going to have this picture. So, I am going to

have the pivot here, then I am going to have the lower part here which have already

found. Then, I am going to have the upper part here, these are the elements have already

scanned and partitioned and then I have the part that is to do. So, in the beginning

everything is to do and there is no lower part and there is no upper part.

So, what I am saying that we will keep these pointers like this. So, this thing will point to

the end of this and this thing will point to the end of this. So, this is what we want to

achieve. So, we start as I said with this picture. So, what we do is, if we see something

which is lower, then I extend the lower part and I am move to the next element, again we

see something this is lower. So, we extend the lower part. So, if this point would be

saying is that the lower part has two values 32 and 22 and the upper part is empty and

everything will 78 onwards is ((Refer Time: 07:51)).

Now, I look at 78. So, 78 is bigger than 43. So, the lower part stays here and now I have

a non empty upper part namely 78. Now, I look at 63, once again 63 belongs to the upper

part. So, again I am move this follow, 57 again belongs to the upper part. So, I move to

the follow, 91 again move to the follow. So, the first interesting thing happens when I

come to 13. So, now, , when I come to 13, I find that it must going to the lower part, but

the lower part is far away.

So, how do I achieve this. So, what I will do is, I know that this element to the right of

the lower pointer. So, this is bigger than P and this element is smaller than P. So, one way

to achieve what I need is to exchange these two values. So, I exchange 13 and 78. So, I

take 13, I label it as lower, then I exchange and move both points. So, this is a forward

partitioning algorithm which keeps reducing the length of the un partition part, if I see

something which is upper, I just move the green pointer. If I see something that is lower,

I exchange that lower element with the first part of the upper thing and then I extend both

partitions.

139

Then, finally, at this point I still do not have the final thing, but I want this pivot element

to be in between these two. So, now the point is that I know that this is the last. So, what

is to the right of the yellow pointer is the first upper limit and what is to the left of the

yellow pointer is the last lower thing. So, I can exchange the 43 and 13 and then I get the

final array partition does I want to that pivot in the middle, the lower part on the left and

upper part on the right.

(Refer Slide Time: 09:40)

So, this is how we do quick sort in general. So, in general now remember that after we do

this partitioning, we are going to have to quick sort this part and quick sort this part. So,

the recursive calls will be sorting different segments. So, it is useful to say for each call

that I am sorting from some left limit to some right limit. So, in general quick sort will

take the array and it will take two pointers, it will say sort from l to r minus 1.

Now, if this length is small, in other words, I have only one value, if r minus l is less than

or equal to 1, if either are then you want value or if I had no values sort, then I do

nothing. So, this is the base case. So, this is the recursive value algorithm, if the sorting,

array to be sorted as only one element we do nothing. Otherwise, using the terminology

of the previous example, we use the yellow to indicate the position of the yellow pointer

and we use green to indicate the position of the green pointer. So, these two variables

indicate the position of these two arrows.

So, remember that we start to the right to the pivot. So, initially we have at the position l,

we have that pivot and r minus 1 the last terms. So, this is our pivot P. So, our initial

140

thing is to say that put both these pointers here. So, initially yellow is l plus 1. So, that is

this position and we start now moving the green. So, green starts l plus 1 and goes

until… So, if we see that the green value is smaller than the pivot. So, this is the pivot.

So, A of l is the pivot.

So, the green value, the value I am looking at under the green pointers smaller, then I do

this exchange. So, if I am wear somewhere and I have this green value, then what

happens this is smaller, then I exchange these two values. So, that is what this is same,

swap A the element at position yellow and the element at position green and A should be

swap and then, I will also increment the yellow point. The green point has be

incremented anyway at a P..

So, finally, after this loop I have done this partitioning to the extent where I have the

pivot element, I have the lower part and the upper part. And now what I want to do is, I

want to move the pivot to the center, at this point I have the yellow pointer here and the

green pointer here. So, I need to take the last element here and exchange to the pivot and

that is what this is going to same.

Exchange the value at position l with the value at position yellow minus 1, now I having

done this, now I want to recursively sort. So, I want to sort from the beginning l up to an

to the left of this yellow pointer. So, I sort from A from l to yellow, when I want to sort

everything on the right. So, I sort with yellow plus 1 and sort into right. So, these are the

input recursive calls. But, now the important thing is that at this point everything

between l and yellow is small than the pivot, everything beyond yellow plus 1 up to r is

bigger than the pivot. So, after these two sorting sub recursive calls to quick sort nothing

more needs to be done, we are done.

141

(Refer Slide Time: 12:46)

So, as I said this partitioning strategy can also be implemented in a different way and in

fact, this is the original partitioning strategy proposed by Tony Hoare. So, in this original

strategy, the idea was to not start from one end and sweep until you claim all the element,

but it started opposite ends. So, you start building up in some sense, the you start

building up the lower side from here and you start building up the upper side from here.

And gradually the lower side grows, until it can expend a more the upper side goes and

then everything is in place and then, you do the final swap as before. So, here what you

do is, you start with again I will use the same color thing. So, yellow refers to lower

green refers to upper. So, what I will do is, I will take the yellow pointer and keeps

scanning until I find the value which is not yellow. So, 32 is smaller than 43. So,

remember that we have trying to grow the yellow partition is the lower partition.

So, trying to include in the lower partition everything smaller than 43 and trying to

include in the upper partition everything with the bigger than 43. So, I keep moving the

yellow thing until I find the first error in some set. So, 32 is . So, I skip over it, 22 is also

smaller than 43. So, I skip over it and now I reach the value 72. So, this point my

partition ends here and 72 cannot be included, because it is bigger than 43.

Now, I start on right hand side and I look for the position, where I can include things in

the upper thing, but the very first thing I see 13 should not be there. So, this pointer up

upper limit is here. So, now, what I do is, I exchange these two values, if I exchange

these two values, then this will become 13, this will become 78 and then, I will be able to

142

shift these two boundaries by 1. So, this is the basic step in this partitioning strategy.

So, are the next step what I do is, I exchange the 13 and 78 and no I say that I have the

lower thing up to here and I have an upper thing up to here. So, this is the invariant now,

we have the lower thing on the left part and upper thing for the right part and in between

we have the unsorted elements, but we have these two indicators, the left most unsorted

the left most impartation element, the right most impartation element.

So, now, I again a start doing the same thing, I move the yellow right, until I can along

extend lower, here I cannot extend it anywhere, because 63 should already not be there.

So, I cannot move this partition. On the other hand, the upper partition can move,

because 91 is bigger. So, I will move it left, 57 is still bigger. So, I will move it left again,

63 is still bigger. So, I will move left again.

And now I find that the right partition indicator has move to the left of the left partition.

So, when this exchange happens, then it terminate this partition. So, when the right

boundary crosses the left boundary, when we are finish partitioning of the element,

because there is nothing in between the two elements to be partitioning any more. So,

once we have terminated, now we have the same problem as before which is that we

want to move this element to this center, but now remember that at this point, when this

thing is terminates, the right part there is pointing to the end point of the lower limit.

So, I can just exchange these two. So, I can exchange the 13 and 43. So, I take this there

to move this here and then, I get my answer. So, if I move this and then, I simultaneously

move the green pointer, now I have the pointed to the last of the lower elements or the

pointed to the first of the upper elements and now I can apply quick sort recursively to

this part to this part.

So, we will not write Pseudo code or describe this, the algorithm and more detail, but

you can definitely try and work out similar way of keeping these indices moving as we

did for the earlier partitioning and see if you can get it right, this is also discussed in

many of the books. So, both these partition algorithm that we have in text books and you

can choose which ever have find easier.

In both cases remember that they basic variant condition, there are these two markers and

these two markers indicate the part which is already when partition, the limits of the

lower and the upper part. And then, there is an unpartisan part and then, the unpartisan

part becomes empty you have done.

143

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

