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Lecture - 8
Maximizing the Shear Component of Traction

Welcome to Lecture 8! In this lecture, we will find out the plane on which the shear component of

traction is maximized/minimized. This is again important because one of the failure theories says that
the body will fail if the shear component of traction reaches a critical value.

1 Shear component of traction on an arbitrary plane (start time: 00:45)

To maximize/minimize, we need to first find an expression for the shear traction on any plane. We

consider a part of our body as shown in Figure 1. The plane shown has normal n and the traction on it is
denotedby t.

Figure 1: A section of the body with normal and shear component of traction shown

In the last lecture, we had seen that the normal component of this traction (σnn) is given by:

σnn= t · n (1)

To get the shear component of traction, we need to subtract this normal component from the total

traction vectorially. In Figure 1, the traction t has been decomposed into two parts: normal and shear
component. The projection of the traction along n corresponds to the normal componentgiven by σnnn.
The remaining component (perpendicular to n) is the shear part. It can be represented as τn⊥where τ

represents the magnitude and n⊥ represents the direction (has to be perpendicular to n). Applying
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Pythagoras theorem in the right angled triangle formedby traction and its components shown in Figure

1, τ2will be given by

(2)

Note that two vertical bars on each side are used to denote the magnitude of a vector while a pair of
single vertical bars is used to denote the magnitude of a scalar.

1.1 Representation in terms of principal planes (start time: 04:08)

If we work in the coordinate system of principal directions, our stress matrix will be a diagonal matrix
and that will greatly simplify the calculation. We thus represent everything in this coordinate system
which yields

(3)

This givesus the formula for square of themagnitude of total shearcomponentof traction on an arbitrary

plane. Note that this total/resultant shear would be acting in a direction on the plane givenby the vector
sum of both shearcomponentson that plane. For example, on the e1plane, we have both τ21 and τ31. The

vector resultant of these two ( ) will give us the square of the magnitude of total shear
component of traction as given by equation (3).

2 Maximization/Minimization using Lagrange Multipliers (start time: 07:34)

Having obtained the expression for the total shear component of traction, this needs to be
maximized/minimized. As n1, n2 and n3 are not independentof each other, we again use the method of
Lagrange multipliers. So, we define a function V as given below:

(4)
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We’re using α to denote the lagrange multiplier here because we already have λ’s for principal stress

components. This is the function that has to be maximized/minimized with respect to the 4 unknowns:
n1,n2,n3 and α. Let us take the derivative of V with respect to these four unknowns starting with the kth

component of normal vector (nk):

(5)

We have used the fact that the derivative of one component of normal vector with another will give us
Kronecker delta function. Then, using the Kronecker delta property, we have removed one of the
summations from each of the terms. The fourth equation is now obtained by taking derivative with

respect to α and equating to zero, i.e.,

(6)

This is our constraint itself (i.e.magnitude of nhas tobe unity).Writing equation (5) foreach k separately,

we get:

(7)

(8)

(9)

In each of these equations, one among the two terms multiplied has to be zero for the product to be

zero. There are multiple solutions to this problem and all solutions can be foundby considering different
cases. If suppose n1 = 0 in the first equation, n2 = 0 in the second and n3 = 0 in the third, we get a trivial
solution for n1,n2 andn3but thatwill not give us a valid direction as themagnitude of the direction vector

will not be 1. So, we take the first term in the first equation and the second terms in the other two
equations to be zero. So,we have the following equations at hand now:
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(10)

(11)

(12)

Equations (11) and (12) have beenobtained by substitution of n1 = 0. We need to find n2 and n3now. To

eliminate α, we subtract (12) from (11) to get

(13)

Using identity a2 + b2 = (a + b)(a − b), we can cancel (λ2− λ3).

(14)

As λ2 and λ3 are principal stress components, they are fixed for a given point in space and do not depend
on what plane we are considering. Also, as this analysis holds for an arbitrary stress matrix at the point
of interest, λ2 and λ3 can be assumed to be arbitrary. Thus, equation (14) should hold for all λ2 and λ3
implying that the coefficients of λ2 and λ3 must vanish independently. Thus, we get the values of n1, n2
and n3 as

(15)

The above equation gives us four solutions for the direction as n2 and n3both can take two values each
independently. But these are not the only solutions. In equations (7), (8) and (9), if we would have
assumed either n2=0 or n3 = 0 instead of n1 = 0, our analysis would essentially have remained exactly

similar leading to four solutions each given by:

(16)

(17)

So, we have 12 sets of solutions in total given by equations (15), (16) and (17). Keep a note that these
directions are with respect to the normals of principal planes. For example, if we choose one of the

solutions: n1 =
1

√2
, n2 =

1

√2
, n3 = 0, this tells us that the direction n has to be perpendicular to the third

principal plane’s normal. And at the same time, it makes an equal angle of 45◦ with the first and second

principal axes. If we look at all the 12 solutions, at least one component of n is zero for each of the
solutions. So, eachof these directions are perpendicular to at least one of the principal axes. The first set
(15) is perpendicular to the first principal axis, the second set (16) is perpendicular to the secondprincipal

axis and the third set (17) is perpendicular to the third principal axis.
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3 Magnitude of traction components on planes having maximum shear (start time: 25:41)

We also want to know the value of the shearcomponentof traction on these planes. To find this, we just
need to plug in the solution for n in equation (3). For, the set of solutions givenby equation (17), we get:

(18)

Therefore, themaximum value of shear traction is half of the difference of principal stress components.
The value of the normal component of traction on this plane will be obtained by substituting (17) in
expressionof σnn, i.e.,

(19)

This is for one set of solution of n. Similarly, we can find τ and σnn for other sets of solutions also. When

we work it out,we find that for the solution set (15), we get

(20)

and for the solutions set (16), we get

(21)

4 Visualizing results (start time: 30:38)

To visualize this result, we draw a cuboid at the point of interest with their faces being principal planes
as shown in Figure 2. Since the faces are principal planes, they have only got normal component of
traction. We want to draw the planes corresponding to maximum shear. First, consider the set where

the second normal component n2 = 0, i.e., given by (16). The planes corresponding to this set of normal
vectors are drawn in green in Figure 2. We now extract this green cuboid out and look at it in isolation
as shown in Figure 3. For the front face of this cuboid, the normal is such that its second component is
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zero. The first and third components will both be
1

√2
. This normal makes equal angles with the first and

third principal axes and is perpendicular to the second principal ax is. Similarly, for the left plane, its first

component will be negative and the third will be positive both with magnitude
1

√2
. We also know the

shear and normal components of traction on these planes. For example, on the front face, normal

component (σnn) will be and the shear component (τ) will be . The top face of this

green cuboid still has only λ2 as it is still a principal plane. We can observe that the planes having
maximum shear component of traction are at 45◦ relative to two of the principal axes. Also note that
when we were maximizing the normal component of traction, shear component of traction on those

planes turned out to be zero. But here,when wemaximize the shear component of traction, the normal
component of traction on these planes are not zero.

Figure 2: The black cuboid is centeredat the point of interest with its faces having normals along

principal directions. The planes shown in green are the planes where shear component of traction is
maximized
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