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Lec 33: Boundary Layer Approximation III

Good morning. Let us discuss about boundary layer approximations what we have been
discussing on in the last two classes. In the last class we have derived boundary layer
equations which is the approximations of Navier-Stokes near to a boundary layer
formations to a flow past in a flat plate which is a very simplified conditions. That is
what we have discussed. Today we will look at more detailed way how we can get the
solutions of a boundary layer equations, numerical solutions of boundary layer equations.
So mostly I have been following it the book of Senzel Simbala book.

So more detailed derivations you can look it Senzel Simbala book and as I said it earlier
we are talking about the introductions of boundary layer approximations because we are
not going details in these undergraduate course levels. But if you are really interested
about boundary layers there are very good books are available where you can look at the
concept of boundary layers okay. That is what is I think to professors, okay, Prandtl and
his PhD students, okay, Paul Richards and Blasey, they worked hard early 90s to look for
solutions for the boundary layer approach, that is their contributions. Today, we will talk
about the laminar boundary layers, laminar boundary layers solutions.

Then we will talk about a concept of displacement thickness, momentum thickness and
introductions at the flat plate boundary conditions for the turbulent flat plate boundary
layers. So this is what the contributions from Brendel as well as the places okay. So
those they have contribute early 1900s where that time there was no computers what we
have today. So how they try to solve this the boundary layer problems to estimates the
velocity distributions and the boundary layer thickness. Looking that let us go for the BC
concept what we are talking about.

we are talking about laminar boundary layers equations okay. So as you remember it the
boundary layer equations what we derive it first is the mass conservation which is very
simple as again I am repeating it for two-dimensional incompressible flow velocity
divergence which is equal to del u by del x del v by del y. That is what you just simply
remember this part which is very easy to understand. Remember it that the boundary
layer mass conservation equations. So if I look it as we derive it the linear momentum
equations linear momentum equations and Bernoulli's equations both we combine it.
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to get it the boundary layer equations in this form the basically x direction equations for
steady incompressible flow. That is what is coming out to be as you know it del u by del
ux v del u by del y is equal to we have u dy dx, this is the free stream velocity plus you
have mu del square y square okay. So that is the equations of boundary layer equations.
So this is the equations which is a parabolic form okay, parabolic equations. as compared
to the Navier stoke equations solving these two equations are easy because you know it
from these two equations we can get a solutions of u and v and from that solutions we can
get it what will be the layer thickness, what will be the wall shear stress, what will be the
screen fixants or drag coefficients that is what our idea and what is the thickness of the
boundary layers.

So if you look at that this is a parabolic equations which simplified us just trying to
sketch that part okay. So that means if I have a wall surface like this and you have a
formations of boundary layers, that is what is sigma x, okay. So that means if I take a
control volumes, I know these boundary conditions at the wall is the u v both are the 0
that is the non-slip boundary conditions. And at this point at the inlet point okay at the
section 1 1 I know this the velocity distributions okay that is what we know the velocity
distributions. Also we know how the stream velocity is varying it ux also we know it.

So these boundary condition need not to be the upstream boundary condition need not to
apply it. So by solving these equations today is very easy because you have a very high
computing techniques systems with us and there are lot of numerical techniques are
developed it to approximate even if Navier-Stokes equations. So if you look at the
boundary layers, equations are not that difficult to solve today as compared to 120 years
back. So if you look at these are the boundary conditions and that is the solve we can do
with a time matching scheme. So more details I am not going it.

I am just encouraging you to follow computational fluid dynamics techniques. Then you
can understand it how easily we can solve these two equations to get how the boundary
layer thickness are there, how the velocity distributions are going on. So you can get it
and also the pressure distributions and wall shear stress and screen fictions. That is today
is possible because solving the parabolic equations is not difficult with a numerical
techniques what is available to us. Now as the syllabus part, let us go for a solutions,
numerical solutions of the laminar boundary layers okay.

So basically we are talking about laminar boundary layers. So to getting these solutions
we are just looking at some simplifications as we did it for earlier case that we are
looking at the uniform speed flow v is going that is what is the free stream velocity and if
you look at the sketch the same and very thin plates okay this is thin plate thin plate
because this is to be simplify the conditions that we can get a solutions for this. And
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basically we are looking at what could be the boundary layer thickness if the free stream
velocity is u okay. And considering it is that the boundary layers whatever is here it
remains as a laminar boundary layers that means it is a lesser than the critical Reynolds
numbers which earlier I said it should be less than 1 log 10 to the power 5 okay. So, if
this is the conditions we consider the basic properties like density, the dynamic viscosities
and the kinematic viscosities are fairly constants for these regions.

If I do that with these approximations okay that is what we are not going details but So
that is the very basic concept is here that is what is called if you consider the outer
regions that is what is make it like you have a boundary layer formations this is the y
directions and you have x. So basically you are considering it is the outsider regions the
velocity of u what is varying it v is a constant. okay is a constant that means this is the
cases what we are looking it if you look it the conditions what we are looking it very
simplified cases like we have a very thin plates and the boundary layer formations are
happening it and we also consider is laminar boundary layers for that if you look at this
free streams velocities above just outwards of these boundary layers we can consider this
varying with the x but with a simplifies that 0 pressure gradient conditions that is means
we are not considering the pressure gradient is a major part for boundary layer formations
then the ux will be the v which will be the constant. if that is the conditions the same x
momentum equations you can now the simplified it. X momentum equations we can
simplified it as these ux components become constants that is what is the graphically
representing it.

Case of ux equal to the v that is what is uniform velocity with a boundary layers how we
are considering this is the constants values just out of the boundary layers. Now as we
have a zero pressure gradient concept as a simplifications we have done it. So that way
basically the x momentum equations is further simplified it as a convective terms okay is
equal to kinematic viscosities del square u by del y square. So this is further simplified
with continuity equations is del u by del x del v by del y. So these the equations need to
be solved as I told earlier that for a simplified geometry like this is our domain in these
two main we need to solve.

these two equations to know within the boundary layers how the velocity distributions
are there, how skin frictions are there. So to solve this, we have a two boundary
conditions. As I said it, along these layers, we have the boundary conditions u and v is
equal to 0 and this is the velocity distributions we know it and when y equal tends to the
infinity and v equal to 0, or u equal to y for all the y act x equal to 0. So that is the
reasons where is the irrotational trees there. The Blasius as I mentioned it earlier in 1908
which was a PhD student of Prandtl who is very well known in tolerance studies, okay.
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He introduced a similarity variables. I am not going more details to solve these equations
with these boundary conditions that is a non-dimensional independent variables in terms
of free stream velocity and v and x and the y, the directions in the y directions. So that is
the reasons he tried to get it what could be the functions okay using the similarity
variables. Those are the concepts earlier used when we did not have a computers to do
numerical analysis. The Prandtl used to do hand calculations based on wrong equity
methods which is today's you know it many of numerical techniques is a very well known
techniques.

So but he did it a hand calculations to get these solutions and then he got these equation
solvers as if you look it. after doing hand calculations and all, he get it that eta value is
equal to 4.91 and that is what if he can rearrange it, he will get it sigma of the boundary
layer thickness by x is equal to 4.91 square root of Reynolds number x. So this is for the
boundary layer thickness numerically obtained by Vlesic in 1908 okay.

So and sometimes instead of looking 4.91 people also approximate as sigma by x is
equal to approximate is 5 by square root of Reynolds number okay. So we know this what
is the thickness of boundary layers which is for laminar boundary layers okay. The same
way also he estimate it what will be the wall stress okay that is what you know it that
what we can get it if you know this velocity gradient mu times at y equal to 0. So once
you know this u variabilities so you can differentiate it and mu times find out the slopes
at the thin plates okay.

So we can get it what will be the shear stress okay. So that is what we will get it the
shear stress value is like this okay. and if you divide by the rho u square then we get local
frictions coefficients okay. So local frictions coefficient I just I am writing once again
half of rho u scale capital U squares which is coming out to 0.

664 of Reynolds numbers okay. So this is what as damage is a skin friction factors or
called a Lucan frictions coefficients that is what is because of this boundary layer force
that how much of force acting on this plate that is the interesting to know it drag force
and the lift force. So that is what from this boundary layer thickness for then we can get it
what will be the wall shear stress and what will be the screen friction coefficients or the
local friction coefficients for the boundary laminar boundary flat plate boundary layers
okay. Still we are talking about the laminar flat plate boundary. So that is what you can
have a understanding. Now if you look at more details if I looking it from the edge of a
plate as I go and if I sketch the boundary velocity distributions this is what the boundary
layers.

okay this is what the boundary layers if I sketch the velocity distributions you can see
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they like this. The tangent and this velocity distribution at the y which is a representing us
mu times is representing us the wall shear stress. So you can see that the wall shear stress
will be more at the front end but edge going back the wall shear stress will be the less that
is the understanding should be there. So as the boundary layer formations happening it
very initial phases you will have a more wall stresses as go to the downstream. So as you
go to downstream your shear stress decreases shear stress decreases.

So as shear stress decreases so you have a more front you will have a shear stresses that
is the reasons if you look at the aircrafts. wings we try to design with such a way that it
can take it more loads okay at the boundary layers parts okay that is the reasons if you
look at our forefathers used to sharpening the arrows okay. So that surfing of arrows the
basically you can understand it how the boundary layer formations happens it and what
could be the strongest materials what we need it at the top of the arrows okay that is the
necessary to sustains the boundary layers formations. But the same concept is there you
can understand it that at the front end will have a higher shear stress and as you go to
downstreams your shear stress decreasing patterns are there. And that is the reasons your
the materials what you use it at the front end of a wing airplane wings or arrow or
missile structures are the more strength, needs a more strength as compared to the
downstream part.

That is the you can correlate it with the field conditions okay. So basically if you look at
the understanding of boundary layers, talk about how the variations of wall shear stress or
screen factors. Now if you look it then another concept what we look it called a
displacement thickness. The basically as we know it the boundary layer thickness
developments happens it okay. The regions which is closer to that boundary layer
formations are happening it.

So the basic idea is comes it as the boundary layer thickness happens it and if I take a
just a free out streamlines okay just of a free streamlines okay which I can consider this
streamlines without boundary layer formations okay that is the without the boundary
layer formations the streamline could go on like this S1 conditions. without boundary
layer formations or we are saying that there is no existence of this flat plate okay. So the
streamlines which is uniform streamlines what is coming it that can go as just a parallel to
this okay. That is why it is a uniform streamflow, uniform streamflow is happening. Now
because of the boundary layer formations are there the streamlines will not go straight
parallel to that that what will be deflected that what will be deflected.

So you can understand it because whatever the mass flow is going through these two
streamlines that should pass through it because the velocity at this point the u is lesser
than the capital the free stream velocity. free stream velocity. So considering that that
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means the distance that a stream line just outside of the boundary layer is deflect away
from the wall due to effect of the boundary layers that is what I was explaining it.
Because of the formations of boundary layers what is the effect is happening the free
stream which is just the outside of the boundary layers how much deflections will happen
it.

how much deflected from that. That deflected part is known as displacement thickness.
That is what deflected part of the streamline distance that is what we will tell that
displacement thickness. So if you look at this is what displacement thickness. So
basically this is mass conservation equations concept that we are talking about the mass
what will be because of deflecting of these streamlines will be delta star is a
displacement thickness into the u that is what will be 0 to y or we can put the infinities
okay. So mathematically to put it the infinity some of the books to sell it that we do not
know this where it is okay that is the reasons we put it 0 to u.

This is what the deficit of the mass into dy okay. So I have not multiplied the rho I have
not multiplied the unit depth okay that is not necessarily. So that way this is what the
mass conservations mass component which is part pass through because of the deflected
of this streamline. This is what the mass deficit it happens within the boundary layers
because the velocity of the boundary layers are lesser than the u value. That is how much
of mass deficit is happening it.

So if you just rearrange this time, you will get this part 0 to infinity, okay because We
are technically considering it we do not know the where the boundary layer ends it. So
you can integrate it but no meaning after this will be the 0 that value. So we will get 1
minus u by dy. So if you know the velocity distributions you can just integrate it and
because this is the free stream velocity you know it just integrate it from this point y
equal to 0 to infinity okay. So then you will get the displacement thickness.

There is a reductions of velocity field near the boundary layer because of that the mass
conservation properties to be hold good it. So the streamlines which is outer streamlines
will be deflected and that deflected part we call the displacement thickness with simple
mass conservation equations we can get it what will be the relationship. So if I know the
u value then we can always compute it what will be the thickness of displacement
thickness. So that means we are getting another thickness which is displacement
thickness giving a star here okay which is a functions of again just trying to write it to u2
again the same functions but earlier it is 5 it is just close to one-third of by the Reynolds
numbers at the x. The same way we can get it what will be the as we do this velocity
distributions so we can get it just doing this integrations we can get it this value the
equation format will be the same the trend will be the same okay.
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So this is what the thickness of the displacement thickness. Now if you look it what
actually helps this displacement thickness is to know it we are creating a if I try to
understand it that means we have an actual wall okay that is the reasons we put it this is
actual wall. but the displacement thickness is gives is as a apparent walls okay. So where
we can apply the flow is irrotational and we can apply this Euler equations. So this is
what the velocity distributions very close to the slide width.

So this is what a imaginary apparent wall concept is comes it as equivalent thickness we
have to add it to solve this Euler equations in irrotational zones. So the displacement
thickness help us to create a apparent layers, apparent wall. So over that we can solve it
as a the irrotational zones we can use the Euler equations to solve it. The same way if
you look at two dimensional flow which is happening between maybe the pipe flow or
maybe between two plates. So you can see that this is the formations of boundary layers
okay.

And these are the velocity distributions we can have this velocity distribution and in a
core regions you can have the constants values like this. So as you go it so this core flow
regions reduce and further we develop a fully develop velocity distributions profiles
starting from entry which is uniformly built. That is what as equivalent when you put it
this is actual velocity distributions and the core regions. Instead of this we introduce the
displacement thickness okay. So this is the displacement thickness part and these
displacement thickness outsiders this is Euler equations.

So we can assume it more or less the uniform velocity distributions within this okay. So
we consider the apparent layers thickness layers as the regions beyond that it is
representing for us the Euler equation solvents. So this is what help us for real conditions
to coming to a afferent wall concept between these afferent walls we can consider is a
flow is as equivalent to irrotational flow and we can use simple stream functions and
velocity potential functions and the Bernoulli's equations to solve the Euler equations to
get it the flow patterns the velocity distribution pattern. displacement thickness give us to
develop the apparent wall concept where we can use Euler equations to derive that. Let us
come with a very simple problem which is there in Sindel Simbala book.

There is a low speed wind tunnels being designed for calibrating the hot weather wires
okay air is at 19 degree so this is the air flow systems and the test section of this wind
tunnel is 30 centimeter diameters okay that is what is okay this is 30 centimeters the test
sections and 30 centimeters in the length. So the length is given to us. The flow through
this test section must be uniform because that means we have to locate what is the
laminar boundary layer thickness. It should not have turbulent boundary layers because
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then we cannot make a test section power. So we will try to make it the test section such a
way that laminar boundary conditions prevails as well as you have to look it what is the
amount of thickness is coming it which is will be appropriate for a displacement
thickness and also boundary layer thickness.

With a speed, tunnel speed 1 8 to 8 meter per hour and the air speed is 4 meter per
seconds. So we need to know it that how much will be central line air speed accelerated
by the end of the test sections okay. That is the things where I am not going all the steps
wise. So we have to flow is steady, incompressible while it is smooth and disturbance
vibrations are kept minimum. You just find out the kinematic viscosity of air at the from
any tables defined is given in the book of any fluid mechanics books and all.

So estimate what will be the Reynolds number and of this test because test section is 30
centimetres okay. So is a circular test sections. So basically at the initially you will have
this 30 centimeter but at the end you will have a boundary layer formations. You have
boundary layer formations. At the leading edge there will be no boundary layer
formations but at the end we have the boundary layer formations.

What is that thickness? What is the Reynolds numbers at these points? That is what you
can compute it. The Reynolds numbers coming about 7.9610 to the power 4 which is
lesser than 10 to the power 5. So the flow is laminar that is critical numbers sometimes 5
to 10 5 million 5 lakhs we consider it is but it is okay. So we can consider is the as you
consider is a laminar flow happens it.

So now you are computing the displacement thickness just substituting the displacement
equations we can get it the displacement is coming in order of close to the 2 mm. Just you
look it. I always you demonstrate it, think it, which is not visible. Mostly we ignore that
part. but that is what is majorly controls the boundary layers how the drag force or lift
force are happening it and how the shear stress distributions are happening it.

But thickness of as you demonstrated by these examples thickness in the order of
millimeters the diameter is in terms of centimeters okay. So that way you can understand
it how difficult it was to measure the boundary layers in almost 120 years back okay. So
now we have a lot of advanced fluid mechanics equipments, we have high computational
facilities so we can conduct very detailed experiments. But 120 years back understanding
the boundary layer concept derive the solutions of boundary layer equations by hand
written hand calculations that is what was quite appreciable. Now we come to the
momentum thickness which is not big the concept which is already we talk about shear
stress displacement thickness also the wall shear stress.
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Same way it is called the momentum thickness that means As you know it we apply the
control volume concept. So we will apply the control volume concept to know it what
will be the drag force is happening it. So what will be the drag force is happening it on
this plate. So that means let me I sketch it the problems. If you look at that same things I
am defining to here this is boundary layer thickness.

I am taking this is my control volume this is my control volume okay that is what very
beginning I said this is what my control volume. So there will be a force acting on this on
this plate for drag force in the x directions drag force in x directions have dx that is what
will be act on this And from this I know uniform stream flow at these points I know it as
I was telling it that I have the velocity distributions okay. I have velocity distributions
then I have the uniform velocity distributions outer of these boundary layers. that is what
is represented here. Mass deficit and this is the delta displacement thickness is showing it
how much extra mass that these two we equal each other okay above these free streams
okay above these free streams.

So the mass flow deficit due to the boundary layers and that is what is mass that net mass
is equate that is what I used to derive for the displacement thickness same concept is
coming it but here we will use it as we have done for integral approach. So we will
equate the momentum flux in flux and out flux and then we will try to find out what will
be the drag force. So this is a simple case representation if you take a control volumes
and you try to equate at the momentum flux way in and out and try to find out what will
be the drag force acting on this plate okay. That is what looking from this as I earlier I
derive it the same way I can get it the mass flux and relationship with the displacement
thickness that is what it already I derived it. So you can see it now we are applying it as
for these control volumes we are applying it some of the force acting is equal to the net
momentum outflow flux from these cross sections.

It is a two dimensional cross section so we can define it what will be the cross sections
momentum flux is going out. So this is in, this is out. So if you look at that part and just
rearranging the drag force components and x that then you will getting a drag force okay.
Momentum thickness is nothing else.

It is talking about only the screen fix and factors okay. It is just introduced as a
momentum thickness. as equivalent to moment change because of these boundary layers.
So it is defined as viscous drag force on the plate per unit width okay that is what is
mentioned it okay which is equal to rho u square theta okay that is as a equivalent
representations. That is what if you look it for drag force viscous drag force which F dx
by per unit width w and that is what is the momentum flux net what you and you are
equating by rho u square okay that is the momentum thickness and you can have a simple
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calculations then you can get it very simple way the you can remember it 0 to y okay is
equal to small u and by capital U this is a free stream velocity. So this is momentum so
you can see this multiplications with a u okay that is what is a momentum thickness and
many of the times we why we represent as infinities and mathematical point of view as I
told it earlier.

So we define it as the momentum thickness. So we can get it what will be the momentum
thickness which is a as equal to the skin friction factors. That is what you can understand
it because we derived it considering a control volume or you can derive from the velocity
distribution both are the same. So but we have the different naming the momentum
thickness or skin factors okay. friction factors okay but the both are the same. So that is
not a as theta is the same as the delta delta but with a different constants values okay if
you can say that 0.

66 upon by r and which is a 13% at the locations x. So mostly this type of concepts
comes in a gate or engineering service but you try to understand it as equivalent of
thickness we are representing for displacement thickness as well as the momentum flux
thickness. Because the change of the flux what is the net force acting as a skin friction
factors on a flat plate due to the formations of boundary layers. That is the point we are
talking about. Now we are not going to more details. When you go for the turbulent
boundary layers just conceptually I will discuss with you.

It is a very complex equations it comes out to be. So the turbulent boundary layers
basically we do not get it hand calculations based even if numerical techniques to solve
these problems because as I introduced very simple way to the turbulent boundaries.
chaos flow with a fluctuating part, the time average components are there. So instead of
that the people just try to look at the standard formulas okay which can enough to give
the velocity distributions in the boundary layer regions, the turbulent boundary. So one of
the very basic equation is that we call this time average components okay. I will show it
basically empirical natures that means mostly we are trying to get it from experiments
and try to fit the equations and find out the equations okay.

Which is more famous equation for the time average velocity profile is 1 7th power law
okay. That means u the velocity by the free stream velocity again I am just sketching it
okay you have a the velocity distributions for the turbulent flow and you are just looking
it what is this distributions okay which follows this is y directions. which follows
approximately okay again approximately 1 seventh power low okay just
non-dimensionally it just look at these ones okay. This is the empirical equations and we
can try to understand it that when y will be greater than boundary layer thickness then
your the velocity ratio becomes this non-dimensional way the velocity distributions is
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defined by the one-seventh power law okay. So I will show it that so the basically we are
trying to look at the turbulent layers and you try as I introduced earlier it will have a large
eddy formations and there is lot of mixing happens it and really very interesting subject I
can say it.

If you are really interested, learn more turbulent flows which last almost 20 to 30 years.
We spent a lot of resources by many scientists to solve these turbulent flows. So you can
really get knowledge on the turbulent flow but in this undergraduate course we are not
going details. So basically one very simple empirical equations obtained from the
experimental data is called is one seventh power law. The same way the equations what
give us different formats we will go for next but if you look at that when you have a the
shear stress okay to estimating the wall shear stress okay which corresponding to the high
screen friction along the surface okay compared to the laminar boundary weight because
if you draw the velocity distributions so you will have the high wall stress in turbulent
zone as compared to the laminar flow.

So that was high shear stress development will happen it. This is showing it the
comparison tables okay only for the smooth plate, boundary layer thickness,
displacement thickness, the momentum thickness and local friction coefficients which we
have derived for laminar flow okay. So as I said it momentum thickness and local skin
friction coefficient both are the same okay that is only we define in different way. If you
look at the turbulent flow you can see that how the thickness the thickness will be quite
less as compared to the boundary layer laminar flow. But if you look at the value of local
skin factors or the momentum thickness is much larger okay.

This is what you can understand from this okay. It will be much larger. That is the same
way this is the 1 7th power law because but this law does not hold good for all the cases.
They use combined with empirical for the smooth pipes. again they changed the
relationship between boundary layer thickness, displacement thickness, momentum
thickness and local screen friction coefficients. If you look at that in the turbulence things
lot of studies were conducted to get it the best approximations of boundary layer
thickness and these properties in turbulent zones.

So these are all can be said is approximations. So similar way there is a log law okay
which establish the relationship non-dimensional way relationship between here if you
look at the u star subscript star is a friction velocity. okay it is not a velocity it is as
equivalent to the dimension of the velocity but it is a representing about the tau is a the
bed shear stress the wall shear stress by the rho it is a no dimensionally it is looking the
velocity it is but due to the frictions. So that is the reasons with a friction velocity and
that is what the velocity distributions not the 1 by 7th power laws but log law concept
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has come it with having the a, b are two constants which is you can varies from 0.

4 to 0.41 and b varies this. So we get it the log distributions of velocity in boundary layer
regions will give us a value of y u star. by kinematic viscosity plus p and here k and b are
the constants. I am not going more detailed about what is the constants name and all but
you can see that the log law can be used. This is the instantaneous velocity distributions.

The time average velocities will come like this. So we can establish the relationship
between velocity distributions with the tau not the bed shear stress okay bed shear stress
and as a logarithmic functions non-dimensional logarithmic functions we can use it to
have the these relationships okay. So same way it has been tried by many I am not going
details about splinding clause, wall wake clause okay. are interest on the turbulent flows,
I think I can just advise you to take it the advanced level of fluid mechanics book, read
the advanced or the courses which really give you interesting fact how these equations
are derived, how we have been trying it to make it better way to presence this turbulence
flow velocity field okay which is very chaotic or complex that is what we try to do it with
empiricalism with some concept like from experimental data. So the equations are the
different and they have a really utility for different case of this. With this let me conclude
boundary layers approximations as I said it very beginning we are talking about
introductory levels and these are the 3 equations as we talk about boundary layer
equations displacement and momentum equations and that is what we have derived it and
many of gate or engineering service things are comes under these displacement thickness,
momentum thickness and some part of how to estimate the boundary layer thickness that
is things are there.

With this let me I think my student groups who really have put a lot of efforts to prepare
this presentation. Thank you. Thank you.
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