
Chapter 16: Partial Differential Equations – Basic
Concepts

Introduction
Partial Differential Equations (PDEs) form the foundation of mathematical
modeling in various engineering fields, especially in Civil Engineering. They are
used to describe physical phenomena such as heat conduction, fluid flow, stress-
strain analysis, and diffusion processes. Unlike ordinary differential equations
(ODEs) which involve derivatives with respect to a single independent variable,
PDEs involve partial derivatives with respect to multiple variables. This chapter
introduces the basic concepts of PDEs, classification, methods of formation,
and standard forms, laying the groundwork for further study and application in
engineering problems.

16.1 Definition and Notation
A partial differential equation (PDE) is an equation that involves the
partial derivatives of a function of two or more independent variables.

Let u = u(x, y) be a function of two independent variables x and y. Then:

• ∂u
∂x : partial derivative of u with respect to x.

• ∂2u
∂x2 : second-order partial derivative with respect to x.

• ∂2u
∂x∂y : mixed partial derivative.

Example of a PDE:

∂2u

∂x2 + ∂2u

∂y2 = 0

This is Laplace’s Equation, widely used in potential theory and fluid mechanics.

16.2 Order and Degree of a PDE
• Order: The order of the highest derivative present in the PDE.
• Degree: The exponent of the highest order derivative after removing any

radicals or fractions.
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Examples:

1. ∂2u
∂x2 +

(
∂u
∂y

)3
= 0 → Order: 2, Degree: 1

2.
(

∂2u
∂x2

)2
+

(
∂u
∂y

)2
= 0 → Order: 2, Degree: 2

16.3 Formation of Partial Differential Equations
PDEs can be formed by eliminating arbitrary constants or arbitrary
functions from a given relation.

A. By Eliminating Arbitrary Constants

Let the relation involve constants a, b: Example: z = ax + by + ab Differentiate
partially:

• ∂z
∂x = a

• ∂z
∂y = b

Eliminate a, b to get a PDE.

B. By Eliminating Arbitrary Functions

Let the relation be: z = f(x2 + y2)

Differentiate partially and eliminate the arbitrary function f , or its derivatives
f ′, to form a PDE.

16.4 Classification of Second-Order PDEs
A second-order PDE in two variables can be written as:

A
∂2u

∂x2 + B
∂2u

∂x∂y
+ C

∂2u

∂y2 + lower order terms = 0

The discriminant is given by:

D = B2 − 4AC

Classification based on D:

• Elliptic if D < 0 (e.g., Laplace Equation)
• Parabolic if D = 0 (e.g., Heat Equation)
• Hyperbolic if D > 0 (e.g., Wave Equation)
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These types correspond to different physical phenomena and determine the
nature of their solutions.

16.5 Linear and Nonlinear PDEs
• Linear PDE: The dependent variable and all its derivatives appear

linearly. Example:

∂u

∂t
= k

∂2u

∂x2

• Nonlinear PDE: Involves nonlinear terms like products or powers of
derivatives. Example:

(
∂u

∂x

)2
+ ∂u

∂y
= 0

16.6 Standard Forms of First-Order PDEs
A first-order PDE in two variables can be written as:

F (x, y, u, p, q) = 0

Where:

• p = ∂u
∂x ,

• q = ∂u
∂y

Linear First-Order Equation:

a(x, y)∂u

∂x
+ b(x, y)∂u

∂y
= c(x, y)

This can be solved using the method of characteristics, which reduces the
PDE to a system of ODEs.

16.7 Solution of First-Order Linear PDE – Lagrange’s
Method
The standard form is:

P (x, y, z) ∂z

∂x
+ Q(x, y, z)∂z

∂y
= R(x, y, z)
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Solution: Integrate the auxiliary equations:

dx

P
= dy

Q
= dz

R

This system of ordinary differential equations yields the general solution.

Example:

Given: ∂z
∂x + ∂z

∂y = 0

→ Lagrange’s auxiliary equations:

dx

1 = dy

1 = dz

0

Solving gives: x − y = c1, z = c2

Hence, the general solution: z = f(x − y)

16.8 Types of Solutions of PDEs
1. Complete Integral: Contains as many arbitrary constants as the order

of the PDE.
2. General Solution: Contains arbitrary functions.
3. Particular Solution: Obtained by assigning specific values to con-

stants/functions in the general solution.

16.9 Applications in Civil Engineering
• Stress analysis in elastic bodies (Navier’s Equations)
• Flow of water in soils (Laplace Equation for seepage)
• Heat distribution in a rod or slab (Heat Equation)
• Vibration of structures (Wave Equation)

PDEs are indispensable for modeling such physical processes where both space
and time vary.

16.10 Canonical (Standard) Forms of Second-Order PDEs
Transforming a second-order PDE into its canonical form makes it easier to
solve analytically.

Consider a general second-order PDE in two variables:
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A
∂2u

∂x2 + B
∂2u

∂x∂y
+ C

∂2u

∂y2 + lower order terms = 0

To simplify, we use a change of variables: Let ξ = ξ(x, y), η = η(x, y)

Choose these variables such that the PDE becomes:

• Elliptic: ∂2u
∂ξ2 + ∂2u

∂η2 = 0
• Parabolic: ∂2u

∂ξ2 = ∂u
∂η

• Hyperbolic: ∂2u
∂ξ∂η = 0

This transformation is guided by the discriminant D = B2 − 4AC.

16.11 Method of Separation of Variables
A powerful technique used to solve linear PDEs, especially with boundary/initial
conditions.

Idea:

Assume a solution of the form:

u(x, t) = X(x)T (t)

Substitute into the PDE, divide both sides to separate variables, and solve
resulting ODEs independently.

Example:

Heat Equation:

∂u

∂t
= α

∂2u

∂x2

Assume u(x, t) = X(x)T (t), substituting gives:

X(x)dT

dt
= αT (t)d2X

dx2 ⇒ 1
αT

dT

dt
= 1

X

d2X

dx2 = −λ

This leads to two ordinary differential equations:

• dT
dt + αλT = 0

• d2X
dx2 + λX = 0

Solve both under given boundary conditions.
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16.12 Worked Example – Wave Equation
Problem:

Solve the one-dimensional wave equation:

∂2u

∂t2 = c2 ∂2u

∂x2 , 0 < x < L, t > 0

Subject to boundary conditions:

• u(0, t) = 0, u(L, t) = 0
• Initial conditions: u(x, 0) = f(x), ∂u

∂t (x, 0) = g(x)

Solution:

Assume: u(x, t) = X(x)T (t)

Substitute into PDE:

X(x)T ′′(t) = c2X ′′(x)T (t) ⇒ T ′′

c2T
= X ′′

X
= −λ

Solving gives:

• X(x) = sin
(

nπx
L

)
, λ =

(
nπ
L

)2

• T (t) = An cos(cλt) + Bn sin(cλt)

So the complete solution:

u(x, t) =
∞∑

n=1

[
An cos

(
nπct

L

)
+ Bn sin

(
nπct

L

)]
sin

(nπx

L

)
Use Fourier series to determine An, Bn from initial conditions.

16.13 Common PDEs in Civil Engineering Practice

Equation Mathematical Form Application

Laplace’s Equation ∂2u
∂x2 + ∂2u

∂y2 = 0 Steady-state heat flow,
seepage analysis

Heat Equation ∂u
∂t = α ∂2u

∂x2 Temperature variation
in concrete
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Equation Mathematical Form Application

Wave Equation ∂2u
∂t2 = c2 ∂2u

∂x2 Vibrations in beams and
structures

Navier-Cauchy Equation µ∇2−→u + (λ + µ)∇(∇ ·
−→u ) = ρ ∂2−→u

∂t2

Elasticity and stress
analysis

16.14 Numerical Methods (Overview)
While analytical solutions exist for ideal problems, real-world applications
often require numerical methods:

• Finite Difference Method (FDM): Approximates derivatives with
finite differences.

• Finite Element Method (FEM): Divides domain into elements and
applies variational methods.

• Finite Volume Method (FVM): Often used for fluid flow and heat
transfer problems.

Civil engineers use software like ANSYS, ABAQUS, and MATLAB for
solving large-scale PDEs in structures, fluid mechanics, and geotechnics.
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