Chapter 43: Infiltration and Consumptive Use

Introduction

In hydrological studies, understanding how water moves into the soil and how it is used or lost from a hydrological system is crucial. Two fundamental concepts that aid in such analysis are **infiltration** and **consumptive use**. *Infiltration* is the process by which water on the ground surface enters the soil. It affects surface runoff, groundwater recharge, and the soil water balance. *Consumptive use*, on the other hand, refers to that portion of water withdrawn from available sources that is not returned to the original water source — typically due to evaporation or plant transpiration.

A deep understanding of these two aspects is essential for effective water resources planning, irrigation management, and design of drainage systems.

43.1 Infiltration

43.1.1 Definition of Infiltration

Infiltration is the **movement of water from the ground surface into the soil profile**. It is a critical component of the hydrologic cycle as it governs the division of rainfall into surface runoff and subsurface flow.

43.1.2 Factors Affecting Infiltration

Several factors influence infiltration rates, including:

- **Soil characteristics:** Texture (sand, silt, clay), structure, porosity, and organic content
- **Soil moisture content:** Saturated soils have lower infiltration capacity
- **Vegetation cover:** Roots create voids and organic matter that promote infiltration
- Land use: Urbanization and compaction reduce infiltration
- Rainfall intensity and duration
- Temperature and seasonality
- Surface conditions: Crusting, presence of mulch, slope of land

43.1.3 Infiltration Capacity

Infiltration capacity is the **maximum rate at which water can enter the soil under given conditions**. When rainfall intensity exceeds infiltration capacity, surface runoff begins.

- Initially high when soil is dry
- Decreases with time as soil becomes saturated
- Reaches a steady state (asymptotic value)

43.1.4 Infiltration Rate and Measurement

- **Infiltration Rate:** The actual rate at which water enters the soil, usually expressed in mm/hr.
- Measurement Techniques:
 - o Double Ring Infiltrometer
 - o Tension Infiltrometer
 - o Rainfall simulation method
 - o Lysimeters
 - o Empirical estimation from hydrographs

43.1.5 Infiltration Indices

These are simplifications used in hydrological modeling and flood estimation:

- 1. **φ-index** The constant rate of infiltration such that the volume of excess rainfall equals the volume of direct runoff.
- 2. **W-index** Takes into account the infiltration before runoff begins.
- 3. Horton's Equation (Empirical):

$$f(t) = f_c + (f_0 - f_c)e^{-kt}$$

Where:

- o f(t) = infiltration rate at time t
- o f_0 = initial infiltration rate
- o f_c = final (constant) infiltration rate
- o k = decay constant

43.1.6 Applications of Infiltration

- Estimating groundwater recharge
- Surface runoff estimation
- Flood forecasting
- Designing infiltration trenches and basins
- Soil erosion control

43.2 Consumptive Use

43.2.1 Definition

Consumptive use refers to the **amount of water used by plants and evaporated from surrounding soil and water surfaces** in a given area and time. It is **not returned** to the immediate water source.

It includes:

- **Evapotranspiration (ET):** Total water lost by evaporation and transpiration
- **Interception losses:** Water retained on plant leaves that evaporates without reaching the ground
- Water incorporated into plant tissues

43.2.2 Components of Consumptive Use

- Evaporation (E): From soil and water surfaces
- Transpiration (T): Water absorbed and transpired by plants
- Evapotranspiration (ET) = E + T

43.2.3 Factors Affecting Consumptive Use

- Type of crop
- Stage of crop growth
- Climatic conditions (temperature, humidity, wind, solar radiation)
- Soil characteristics and fertility
- Water availability
- Cultural practices and irrigation method

43.2.4 Measurement and Estimation of Consumptive Use

a. Direct Methods

1. Lysimeter Method:

- o Controlled environment
- o Measures percolation and evapotranspiration precisely

2. Soil Moisture Depletion Method:

- o Change in soil moisture before and after crop cycle
- o Requires multiple soil samples

b. Indirect/Empirical Methods

1. Blaney-Criddle Method:

$$CU = K \cdot P \cdot (0.46T + 8)$$

Where:

- o CU = Consumptive use (mm)
- o K = Crop coefficient
- o P = % of annual daytime hours for the period
- o T = Mean monthly temperature (°C)

2. Thornthwaite Method

- o Uses air temperature and latitude
- o Good for preliminary planning

3. Penman Method:

- o Considers radiation, temperature, humidity, wind
- o One of the most accurate

4. Modified Penman-Monteith Method

o Adopted as FAO standard for ET estimation

43.2.5 Consumptive Use vs Water Requirement

- Consumptive Use is the water actually consumed
- Water Requirement includes:
 - o Consumptive use
 - o Percolation losses
 - o Leaching requirement
 - o Other unavoidable losses

43.2.6 Effective Rainfall

The part of rainfall that is available to meet the consumptive use of the crop. It excludes:

- Deep percolation
- Surface runoff

43.2.7 Irrigation Requirement

IR = WR - ER

Where:

- IR = Irrigation Requirement
- WR = Water Requirement
- ER = Effective Rainfall

43.3 Integration of Infiltration and Consumptive Use in Hydrologic Planning

- Both infiltration and consumptive use are key for:
 - o Designing efficient irrigation systems
 - o Managing drought and water scarcity
 - o Assessing groundwater recharge
 - o Preventing **runoff-related erosion**
 - o **Scheduling irrigation** based on crop water needs and soil moisture replenishment

Hydrologic models must simultaneously address infiltration losses and consumptive use to provide accurate water budgeting and resource planning.