
Design and Analysis of Algorithms, Chennai
Mathematical Institute

Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 01

Module - 01

Lecture - 04

 (Refer Slide Time: 00:09)

So far at final example before we delegate in this course, let us look at a problem

involving documents. So, we have two documents and our goal is to find out how similar

they are, right. So, these two documents really variations of the same field. Now, there

may be many different scenarios where this problem is interesting. So, one question may

be for plagiarism detection. So, it could be that somebody has forced to an article in a

newspaper or on a website and you believe that this author has not really written the

article themselves. They have copied these articles from somewhere else or if you are a

teacher in a course, you might be worried that the student, two students have submitted

the same assignments or one student has copied an assignment from some source, some

detail. So, while looking at how similar, if you can measure or similar two documents

are, you can try to quantify this notion that is somebody has copied from somebody else.

Now, it may not always have a negative connotation like this. It might also be to look at

some kind of things when some people are writing code typically writing programs for

some application, over the period of time documents evolve with in this sense the

27

programs evolves, right. So, people add features. Now, you might want to look at two

different pieces of code and try to figure out what are the changes that had happened.

How similar they are, how different they are, what the actual changes that had happened.

Another place where there is positive notion towards documents similarity is to look for

web search. If you ask a question to a search engine and it reports results, typically it

tries to group together result which is similar because they are not really different

answers. Now, if there are 10 different copies or similar copies of a document saying

more or less the same thing and these show up as your first 10 search results, then

another document will be highly relevant and quite different from these will now be lost

because it will be of the first page of searches. So, it is useful to be able to group together

the results of a search query by similarity, so that the user is actually presented by an

effective choice between different answers to the search query and not just the large

number of variations of the same answers.

(Refer Slide Time: 02:13)

So, if this is our motivation, we need a way of comparing documents what is the good

measure of similarity of documents. Now, there are many different notions that people

have come up with. Obviously, it has to do something with the order towards and the

choice of letters and so on, but one way of quantifying the distance looking to document

is to use what is called the edit distance, namely how many changes to you have to make

to transform one document in to another document, and the edit we mean supposing you

28

actually loaded the document in a text editor or word processor, what would be the kind

of things that you could do when we could limit because you got of course block out and

delete the entire document and then cut and paste another document and say edit in two

steps, but this could be kind of cheating. So, we have to limit what operations you do, so

that we have a uniform way of counting this. So, we could say that edit involves how

many characters which changing. So, each step of editing will either add or remove a

letter and perhaps you can allow you to replace one letter by another letter and call that

one change. So, now we want to count these as are basic steps adding or removing the

letter or replacing one letter by another, and find out how many steps it takes to edit one

document make it to make it to another document.

(Refer Slide Time: 03:42)

So, the minimum number of edit operations will then return the distance. Now, the

question that we have as an algorithm problem is how do compute this minimum

distance, right. How do you decide what is the best way to edit one document and make

it another document. Of course, there is always the trivial solution like that block cut and

block space. You can just delete all the letters and then type in the new documents. So,

there is a brute force way of doing it, but this is not likely to be the best possibility, right.

So, you can also try out all possible delete and insert sequences and see which among

them gives you the best solutions, but all of these are very inefficient kind of solutions.

29

(Refer Slide Time: 04:26)

So, again we can go to this question is decomposing the problem. So, supposing out first

goal is just make the first character of the two documents say, if they are already the

same, we leave and go on. If they are not the same, well then we have two options, right.

We can either transform the character, the first character to be equal or we can insert a

character in one of the two documents. So, supposing the document, first document start

with an x and the second document have the z. Either we can say we do one operation to

make x into z or z into x or we can insert x before the z insert before the x or insert the z

before the x, but then we do not necessarily get the same answer. Then, once we have

done this, once we have made the first character the same, then we can recursively try to

fix the rest of the document.

30

(Refer Slide Time: 05:27)

So, now one of the difficulties we face when we do recursion in this manner is that the

same sub-problem becomes up for solutions many times. So, a typical example of this is

the recursive solution to finding the n Fibonacci. So, the Fibonacci numbers are defined,

it is a very classical sequence. So, the first two Fibonacci numbers are 1 and 1. After this

you get the next Fibonacci number adding the previous tools. So, after 1 and 1, the next

one is 2 which is 1 plus 1. The next one is 3 which is 1 plus 2 and so on. 5 is 2 plus 3 and

so on. So, in general the recursive relationship is given by the fact that f n is the sum of

the previous two numbers, n minus 1 n minus 2, and then you have as a base case that the

first two numbers f 1 and f 2 for which n minus 1 and n minus 2 may not be defined for

these two numbers, the values 1.

Now, the problem is that when you apply the recursion directly, so if try to compute the

seventh Fibonacci number for example, it will say for this I need to compute f 6 plus f 5,

but by the excursively apply this f 6 and f 5, we find things like f 4 coming up twice. So,

we have an f 4 which comes here and then f 4 comes here because when I do f 5, I need

to apply this written, and when I do f 6, I need to apply recursively. So, If I do it, I do f

depth forth twice and in fact, I compute this f 5, I actually get another f 4. This f 4 I am

computing a number of times, f 3 a number of times and so on. So, this is really an

inefficient way to calculate it whereas, I just do it for in since here, I get 1 1 2 3 5 8 13 21

and I find that the seventh Fibonacci number is actually you sequence not use that it,

right. So, there is intuitively a very fast way to do this. The recurrence is respected, but if

31

I do it recursively, I end up solving a lot of problems again and again. So, how do we get

around it and this is what we call dynamic program.

(Refer Slide Time: 07:17)

So, dynamic programming says do not compute same sub-problems twice. Whenever we

solve the problems, if have found f of 4, just look it up, store it somewhere, look it up

and make sure that you do not do f 4 again. So, this is one of the techniques that we have

seen in beginning as that we are going to do in this course, and it is important that when

break-up problems into sub-problems, it is not always the case that sub problems can be

solved efficiently unless we look slightly more deeply to this structure of sub-problem

and make sure we solve them in an effective sequence.

32

(Refer Slide Time: 07:55)

Now, as usual this problem of, the difference or similarity between two documents can

be at many different levels. So, we are focused on the words, the actual text, but if we do

not really look at the sequence of words, we just want to set of words, then we might the

for apart in terms edit distance because we need to rearrange the words, but the content if

you just measure in terms of what types of words are there, this might give us an

accurate understanding of the meaning of the documents. So, if you actually search for a

document in a typical search engine, you will often find that the words that you ask for

may not occur together, may not occur in the sequence that you mention. It will find just

document which have that collection of words. So, this is very useful for web search and

the other thing that you might want to do is, measure similarity of words and terms of

meanings.

So, if you search for a document which contains the word car and there is another

document which contains the words automobile, it might to be a good idea for the search

engine to go to documents containing automobile, because automobile and car is

essentially the same thing. So, like the other example you seen before, there can be

variations on the problem and the solution you have for the regional problem, may or

may not be valid for these variations. So, there is always a whole space of new and

interesting problem to solve ((Refer Time: 09:25)).

33

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

