
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 08

Lecture - 16

Quicksort: Analysis

We have seen Quicksort which is a divide and conquer algorithm which overcomes the

requirement for an extra array as in merge sort. So, let us do an analysis of Quicksort.

(Refer Slide Time: 00:11)

So, remember how Quicksort works, you pick up a pivot element say typically this first

element of an array. And then what you do is, you partition this into two parts such that

you have a lower part which is less than or equal to p and may be have an upper part, this

is bigger than p. And you move this pivot in between and then you sort this lower part

and upper part separately recursively and then you do not need to do any combining step,

because these two things are within the correct position with respect to each other.

144

(Refer Slide Time: 00:45)

So, the first thing we observed is that this partitioning actually is quite efficient. We can

do it in one scan of the entire array. So, we can partition with respect to any pivot in

order n time. So, the question is how bigger the recursive problems? So, if the pivot is a

median then you would expect that by definition in median that these are of size n by 2.

Because, the median is that element which splits the array into two parts, those half of

the elements are bigger than the median, half are smaller than the median.

And if you do have this fortunate situation that the pivot is the median, then we end up

with the merge sort recurrence which says that t of n takes time 2 times t n by 2 for the

two parts and this is the partitioning steps. So, it is not the merge step after the

recurrence, but the partitioning set before the recurrence. So, we have as we saw in

merge sort, this recurrence takes order n log n if we expand it out, but the pivot is in

some sense the best case.

145

(Refer Slide Time: 01:44)

What do we thing is a worst case? When the worst case is when the pivot is an extreme

value, either the smallest value or the biggest value. So, if it is a smallest value then what

will happen is that everything will be bigger than the pivot. So, you will have an upper

element set which has n minus 1 values, because the pivot is a smallest value and we will

have nothing on this side. Symmetrically, if the pivot is a largest value in your array, then

you would have everything in the lower element set.

So, this is again besides n minus 1 and the pivot would be something which is on one

extreme end and there is nothing in the other side. So, now what we see is that in order to

sort this array of size n, I have to then sort a smaller segment which is only n minus 1 it

is more smaller than n minus 1. So, our t n takes t n minus 1 plus n, n is a time taken to

partition and t n minus 1 again in the worst case will have again a pivot element which is

the extreme value.

So, for example, supposing we start with the already sorted array like 1, 2, 3, 4 then what

happen is that, we pick 1 as the pivot and then this, this then results in what we want to

solve 2, 3, 4 and then I will pick 2 as a pivot and this results in our sort 1 it sort 3, 4 and

so, on. If you have an already sorted array in some sense, the pivot is always an extreme

values. So, the next step takes splits the array very bad. And of course, we expand out

this t n is t n minus 1 plus n, we get the summation that we got for first selection sort and

insertion sort. So, this becomes order n square.

So, the worst case of Quicksort is actually order n square, which is the same as the worst

146

case for selection sort and insertion sort. So, why do we bother with this much more

complicated algorithm Quicksort, when we already know several intuitive algorithm

which have order n square.

(Refer Slide Time: 03:36)

So, it turns out that Quicksort we can show actually does not behave in this worst case

way in a very frequent manner. So, we can actually compute in the case of Quicksort

what is called the average case complexity and show that this n log n. So, we will not

actually show that it is n log n, but we will try to at least explain what it means to

compute the average case analysis of Quicksort. As we said in the beginning, average

case is very difficult to compute. So, let us see what it involves to do this.

(Refer Slide Time: 04:09)

147

So, the first reason why the average case is difficult to compute is, because we need to

have a way of describing all possible inputs. Now, even for a sorting algorithm all

possible inputs is an infinite space, supposing I just take arrays of a fixed line, supposing

I take arrays of length 4. So, I could have an array which look like 43, 12, 38 and then

62. So, this is an array with 4 elements, I could have another array of 4 elements which is

say 72, 21, 63 and 95.

But, in this way we can continue and put any elements we want and there are infinitely

many error of size 4. But, there is a commonalty between these, which says that the first

element is bigger than the second element. In fact, the second element is the smallest

element and so, on. So, if you look at this we can say that there are 4 elements and we

think of them in order, then the smallest element is here, the second smallest element is

here, the third smallest element is here and the fourth smallest element is here. So, I can

actually think of this as the array 3, 1, 2, 4, because 4 elements and the 4 elements are

ordered in this way.

So, the actual values are not important only the relative order matters. So, we can

actually think of inputs of size and to be these kind of re orderings of 1 to n or

permutations of 1 to n. Now, among these permutations we do not have any preference,

any one of them would come as our input. So, we all know that there are n factorial such

permutations and we say that each of them is equally likely. So, each of them has

probability 1 by n factorial are occurring.

Now, we look at all these n factorial inputs of size n and see how had been our algorithm

behaves. So, we will not do the actual calculation, but if you see the average, you see the

actual time it is take for all the n factorial inputs, added and divide by n factorial which is

what is in probability known as calculating the excepted running time. Then, you can

show that this is actually order n log n.

So, we are not shown it, we are just explain what is the mathematics required in order to

show this. But, in Quicksort you can prove that the expected running time across all

possible random inputs equally likely inputs, this actually order n log n. So, though

Quicksort has an O n squared worst case and the average it behaves like merge sort and

without some of the pit falls of merge sort, it particular it does not requires the extra

space in order to create a merge array.

148

(Refer Slide Time: 06:41)

Now, you can actually exploit this average case behavior in a very simple manner. So,

why does this worst case occur? The worst case occurs, because the pivot that we choose

could be a bad pivot, as we saw if you put the first element as your pivot, then a sorted

array becomes a worst case, because every time the pivot is the extreme element. On the

other hand, you could take the last element and you would have the same problem, if you

pick the midpoint again you can make the middle point of the array that you start with

the extreme element and you can then work backwards and construct always the worst

case which takes order n square.

So, what we are saying is that for any fixed strategy, if I tell you in advance that I am

always going to compute the position of the pivot in a fixed way, then by working

backwards you can always ensure that the position in the current problem, you have a

worst case that is an extreme input and reconstruct something which will take O n square

for that strategy.

So, the solution is to not fix the strategy, each time I want to apply Quicksort to a

recursive sub problem, I have some position 0 to n minus 1 which I need to pick as a

pivot. But, rather than telling you that is going to be 0 or n minus 1 or the mid-way

between 0 and n minus 1, I will say that I will choose any one of these values with equal

probability.

So, think of it as, I am choosing a random number between 0 and n minus 1 equally

likely or if you want to think graphically it is like passing at or throwing a die. So, a die

149

has say six faces normally. So, if you roll a fare die you get any number between 1 and 6

will be equal likely. So, now we have an en sided die. So, we have a complex kind of

object, we throw it and whichever number comes up, we pickup that as a pivot.

So, now the behavior of this algorithm is not fixed, it depends on how this die rolls. So,

this is a different type of algorithm called a randomized algorithm. So, you can now

implement Quicksort in a randomized speed with a very simple randomization step,

namely just pick the pivot at random at each called Quicksort. And it is turns out that

again you can do a similar calculation, saying that across all the possible random choices

I make for the pivot, the expected running time is order n log n. So, this is a very simple,

this is a kind of a dual result to the fact of the average cases n log n, you can exploit that

by creating a very simple randomized strategy in order to achieve this n log n thing with

good probability.

(Refer Slide Time: 09:05)

The other aspect that we mentioned about merge sort, which is a bit limiting, is that it is

inherently recursive. Now, our solution to Quicksort avoids this duplication of space, but

it is recursive. Now, it turns out in Quicksort you can actually manually make a recursive

algorithm iterative. So, the point is that the recursive calls works on disjoint segments.

So, what you need to remember in the recursive call is not the entire segment, but just

what segment you need to work on, you do not need to combine the results.

So, we will not discusses in great detail, but it turns out that you can use a stack, you can

actually maintain your own stack and every time you make a recursive call, you just

150

store in the stack, the left and right end point of what segment needs to be sorted. And in

this way you can actually take the recursive algorithm that we wrote before and convert

it into an iterative algorithm. Now, why you would like to do this in general list, because

you have a trade off in recursion versus iteration depending on your programming

language.

Because, when you make a recursive call, when you make a function call in general in a

programming language, what happens is the current function that you computing has to

be suspended. So, you need to suspend and receive. So, when you make a recursive call

you have to put aside whatever you have and then you have to take a new set of local

variables. So, in the memory of the program you have to load some new data, then you

have to execute the function, you want to terminates, you have to throw that out and

restore the context, you have to resume.

So, this takes some time and it take some resources and so, usually the cost of making a

function call, even though we might count for it in our complexity as a basic operation is

much more than doing some really arithmetic operation like addition or something. So,

in particular recursion every time you make a recursive call, you have basically going

and replacing something on the stack is some new frame and then putting it back and this

takes time.

So, it is in general sometimes for efficiency purposes, good to convert recursion to

iteration. On the other hand, this process can make the algorithm more obscure and many

programming languages actually are optimizing compilers can try to do this

automatically. So, may be this distinction between recursion and iteration does not

always help so, much. But, it is useful to know that certain algorithms can be done both

ways and certain algorithm is difficult to do one here.

151

(Refer Slide Time: 11:26)

So, our final remark before we leave quicksort for now. So, in practice Quicksort is very

fast, as we said the worst case happens very rarely. For this reason, typically Quicksort is

a default algorithm that you see that people use when you have a built in sort function.

So, if you have a spread sheet and allows you to sort a column, then usually this

algorithm running in your background to sort that column is Quicksort or if you have

built in sort function.

For example, C, C plus plus, java all allow you to just call sort, even python just allows

you to just call sort. In almost any programming language, this sort function that is

available to the programmer by just a simple call is usually an implementation of

Quicksort. Of course, this implementation may use various optimizations such as

randomization and other things to make it faster, but at the underlined algorithm the heart

of it is usually Quicksort.

152

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

