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Quicksort: Analysis 

We have seen Quicksort which is a divide and conquer algorithm which overcomes the 

requirement for an extra array as in merge sort. So, let us do an analysis of Quicksort. 

(Refer Slide Time: 00:11) 

So, remember how Quicksort works, you pick up a pivot element say typically this first 

element of an array. And then what you do is, you partition this into two parts such that 

you have a lower part which is less than or equal to p and may be have an upper part, this 

is bigger than p. And you move this pivot in between and then you sort this lower part 

and upper part separately recursively and then you do not need to do any combining step, 

because these two things are within the correct position with respect to each other. 
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So, the first thing we observed is that this partitioning actually is quite efficient. We can 

do it in one scan of the entire array. So, we can partition with respect to any pivot in 

order n time. So, the question is how bigger the recursive problems? So, if the pivot is a 

median then you would expect that by definition in median that these are of size n by 2. 

Because, the median is that element which splits the array into two parts, those half of 

the elements are bigger than the median, half are smaller than the median. 

And if you do have this fortunate situation that the pivot is the median, then we end up 

with the merge sort recurrence which says that t of n takes time 2 times t n by 2 for the 

two parts and this is the partitioning steps. So, it is not the merge step after the 

recurrence, but the partitioning set before the recurrence. So, we have as we saw in 

merge sort, this recurrence takes order n log n if we expand it out, but the pivot is in 

some sense the best case. 
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What do we thing is a worst case? When the worst case is when the pivot is an extreme 

value, either the smallest value or the biggest value. So, if it is a smallest value then what 

will happen is that everything will be bigger than the pivot. So, you will have an upper 

element set which has n minus 1 values, because the pivot is a smallest value and we will 

have nothing on this side. Symmetrically, if the pivot is a largest value in your array, then 

you would have everything in the lower element set. 

So, this is again besides n minus 1 and the pivot would be something which is on one 

extreme end and there is nothing in the other side. So, now what we see is that in order to 

sort this array of size n, I have to then sort a smaller segment which is only n minus 1 it 

is more smaller than n minus 1. So, our t n takes t n minus 1 plus n, n is a time taken to 

partition and t n minus 1 again in the worst case will have again a pivot element which is 

the extreme value. 

So, for example, supposing we start with the already sorted array like 1, 2, 3, 4 then what 

happen is that, we pick 1 as the pivot and then this, this then results in what we want to 

solve 2, 3, 4 and then I will pick 2 as a pivot and this results in our sort 1 it sort 3, 4 and 

so, on. If you have an already sorted array in some sense, the pivot is always an extreme 

values. So, the next step takes splits the array very bad. And of course, we expand out 

this t n is t n minus 1 plus n, we get the summation that we got for first selection sort and 

insertion sort. So, this becomes order n square. 

So, the worst case of Quicksort is actually order n square, which is the same as the worst 
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case for selection sort and insertion sort. So, why do we bother with this much more 

complicated algorithm Quicksort, when we already know several intuitive algorithm 

which have order n square. 

(Refer Slide Time: 03:36) 

 

So, it turns out that Quicksort we can show actually does not behave in this worst case 

way in a very frequent manner. So, we can actually compute in the case of Quicksort 

what is called the average case complexity and show that this n log n. So, we will not 

actually show that it is n log n, but we will try to at least explain what it means to 

compute the average case analysis of Quicksort. As we said in the beginning, average 

case is very difficult to compute. So, let us see what it involves to do this. 

(Refer Slide Time: 04:09) 

 

147



So, the first reason why the average case is difficult to compute is, because we need to 

have a way of describing all possible inputs. Now, even for a sorting algorithm all 

possible inputs is an infinite space, supposing I just take arrays of a fixed line, supposing 

I take arrays of length 4. So, I could have an array which look like 43, 12, 38 and then 

62. So, this is an array with 4 elements, I could have another array of 4 elements which is 

say 72, 21, 63 and 95. 

But, in this way we can continue and put any elements we want and there are infinitely 

many error of size 4. But, there is a commonalty between these, which says that the first 

element is bigger than the second element. In fact, the second element is the smallest 

element and so, on. So, if you look at this we can say that there are 4 elements and we 

think of them in order, then the smallest element is here, the second smallest element is 

here, the third smallest element is here and the fourth smallest element is here. So, I can 

actually think of this as the array 3, 1, 2, 4, because 4 elements and the 4 elements are 

ordered in this way. 

So, the actual values are not important only the relative order matters. So, we can 

actually think of inputs of size and to be these kind of re orderings of 1 to n or 

permutations of 1 to n. Now, among these permutations we do not have any preference, 

any one of them would come as our input. So, we all know that there are n factorial such 

permutations and we say that each of them is equally likely. So, each of them has 

probability 1 by n factorial are occurring. 

Now, we look at all these n factorial inputs of size n and see how had been our algorithm 

behaves. So, we will not do the actual calculation, but if you see the average, you see the 

actual time it is take for all the n factorial inputs, added and divide by n factorial which is 

what is in probability known as calculating the excepted running time. Then, you can 

show that this is actually order n log n. 

So, we are not shown it, we are just explain what is the mathematics required in order to 

show this. But, in Quicksort you can prove that the expected running time across all 

possible random inputs equally likely inputs, this actually order n log n. So, though 

Quicksort has an O n squared worst case and the average it behaves like merge sort and 

without some of the pit falls of merge sort, it particular it does not requires the extra 

space in order to create a merge array. 
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Now, you can actually exploit this average case behavior in a very simple manner. So, 

why does this worst case occur? The worst case occurs, because the pivot that we choose 

could be a bad pivot, as we saw if you put the first element as your pivot, then a sorted 

array becomes a worst case, because every time the pivot is the extreme element. On the 

other hand, you could take the last element and you would have the same problem, if you 

pick the midpoint again you can make the middle point of the array that you start with 

the extreme element and you can then work backwards and construct always the worst 

case which takes order n square. 

So, what we are saying is that for any fixed strategy, if I tell you in advance that I am 

always going to compute the position of the pivot in a fixed way, then by working 

backwards you can always ensure that the position in the current problem, you have a 

worst case that is an extreme input and reconstruct something which will take O n square 

for that strategy. 

So, the solution is to not fix the strategy, each time I want to apply Quicksort to a 

recursive sub problem, I have some position 0 to n minus 1 which I need to pick as a 

pivot. But, rather than telling you that is going to be 0 or n minus 1 or the mid-way 

between 0 and n minus 1, I will say that I will choose any one of these values with equal 

probability. 

So, think of it as, I am choosing a random number between 0 and n minus 1 equally 

likely or if you want to think graphically it is like passing at or throwing a die. So, a die 
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has say six faces normally. So, if you roll a fare die you get any number between 1 and 6 

will be equal likely. So, now we have an en sided die. So, we have a complex kind of 

object, we throw it and whichever number comes up, we pickup that as a pivot. 

So, now the behavior of this algorithm is not fixed, it depends on how this die rolls. So, 

this is a different type of algorithm called a randomized algorithm. So, you can now 

implement Quicksort in a randomized speed with a very simple randomization step, 

namely just pick the pivot at random at each called Quicksort. And it is turns out that 

again you can do a similar calculation, saying that across all the possible random choices 

I make for the pivot, the expected running time is order n log n. So, this is a very simple, 

this is a kind of a dual result to the fact of the average cases n log n, you can exploit that 

by creating a very simple randomized strategy in order to achieve this n log n thing with 

good probability. 

(Refer Slide Time: 09:05) 

 

The other aspect that we mentioned about merge sort, which is a bit limiting, is that it is 

inherently recursive. Now, our solution to Quicksort avoids this duplication of space, but 

it is recursive. Now, it turns out in Quicksort you can actually manually make a recursive 

algorithm iterative. So, the point is that the recursive calls works on disjoint segments. 

So, what you need to remember in the recursive call is not the entire segment, but just 

what segment you need to work on, you do not need to combine the results. 

So, we will not discusses in great detail, but it turns out that you can use a stack, you can 

actually maintain your own stack and every time you make a recursive call, you just 
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store in the stack, the left and right end point of what segment needs to be sorted. And in 

this way you can actually take the recursive algorithm that we wrote before and convert 

it into an iterative algorithm. Now, why you would like to do this in general list, because 

you have a trade off in recursion versus iteration depending on your programming 

language. 

Because, when you make a recursive call, when you make a function call in general in a 

programming language, what happens is the current function that you computing has to 

be suspended. So, you need to suspend and receive. So, when you make a recursive call 

you have to put aside whatever you have and then you have to take a new set of local 

variables. So, in the memory of the program you have to load some new data, then you 

have to execute the function, you want to terminates, you have to throw that out and 

restore the context, you have to resume. 

So, this takes some time and it take some resources and so, usually the cost of making a 

function call, even though we might count for it in our complexity as a basic operation is 

much more than doing some really arithmetic operation like addition or something. So, 

in particular recursion every time you make a recursive call, you have basically going 

and replacing something on the stack is some new frame and then putting it back and this 

takes time. 

So, it is in general sometimes for efficiency purposes, good to convert recursion to 

iteration. On the other hand, this process can make the algorithm more obscure and many 

programming languages actually are optimizing compilers can try to do this 

automatically. So, may be this distinction between recursion and iteration does not 

always help so, much. But, it is useful to know that certain algorithms can be done both 

ways and certain algorithm is difficult to do one here. 
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So, our final remark before we leave quicksort for now. So, in practice Quicksort is very 

fast, as we said the worst case happens very rarely. For this reason, typically Quicksort is 

a default algorithm that you see that people use when you have a built in sort function. 

So, if you have a spread sheet and allows you to sort a column, then usually this 

algorithm running in your background to sort that column is Quicksort or if you have 

built in sort function. 

For example, C, C plus plus, java all allow you to just call sort, even python just allows 

you to just call sort. In almost any programming language, this sort function that is 

available to the programmer by just a simple call is usually an implementation of 

Quicksort. Of course, this implementation may use various optimizations such as 

randomization and other things to make it faster, but at the underlined algorithm the heart 

of it is usually Quicksort. 
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