
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of  Computer Science and Engineering,

Module – 05 

Lecture - 29 

Minimum Cost Spanning Trees 

Having seen a variety of algorithms for shortest paths on weighted graphs, we now move 

to a completely different problem that of computing, what is called Minimum Cost 

Spanning Tree. 

(Refer Slide Time: 00:12) 

So, to motivate the problem, let us consider the following example. Suppose, we are in a 

district which has a road network and after a bad cyclone, the roads are all being 

damaged. So, the first priority of the government is to restore the roads, so that relief can 

be sent to various parts of the district and also people can start moving around again. So, 

the priority is to restore enough roads, so that everybody can move around. So, the first 

criteria for the government to restore road is to ensure connectivity. So, given this which 

set of roads should the government restore first? 
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(Refer Slide Time: 00:48) 

 

So, if the main criterion is minimum connectivity, then it should be clear that there is no 

point in restoring roads which find a loop. For instance, supposing we restore all these 

four roads, then we could have deleted any one of these roads, say 3 to 4 or 2 to 3 and 

still one can get from any of these four towns to any four other towns in the district. So, 

removing an edge from a loop cannot disconnect a graph and our aim is to find some sub 

set of edges within this graph which are connected in such a way that this is a minimal 

such set of edges. 

So, what we want is a connected sub graph of this original graph which does not have 

any loops which is acyclic and this is precisely what is called a tree. So, tree by 

definition is a connected acyclic graph. And in particular, we start to the arbitrary graph 

and we are looking for a tree which sits inside the graph, which is a sub graph in terms of 

the number of the edges, which connects all the vertices in the original graph. So, such a 

tree is called a spanning tree, it spans the vertices of the original graph, but it forms a tree 

outer the sub set of three edges. 
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(Refer Slide Time: 02:00) 

 

So, in this graph for instance, one spanning tree we could form, other red edges shown 

here, 1 to 2, 2 to 3, 3 to 4 and 4 to 5. Of course, we could form other spanning tree for 

instance this is green one, this is 1 to 3, 2 to 3, 2 to 5 and 4 to 5. So, there are many 

possible spanning trees that one can construct on a given graph. 

(Refer Slide Time: 02:22) 

 

Now, suppose that the graph also has weights. In this example, the weight for instance 

could be the cost of repairing a road. So, supposing restoring the road has a cost and now 

the government would like to not only restore connectivity, but do it I mean at minimum 

cost. So, if for instance, the government chose to repair this tree of roads, then the total 

cost is 18 plus 6, 24 plus 70, 94 plus 20, 114. So, it could incur cost of 114 to the store, 
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this spanning tree. 

On the other hand, if the government chooses green spanning tree, then the cost reduces 

to 10 plus 6 is16 plus 20 is 36 plus 8 is 44. So, different spanning trees now will come at 

different cost and the goal would be to reduce the cost per minimum. In this particular 

example, you can check this green tree, which has cost 44 is actually the minimum cost 

spanning tree on this particular graph. 

(Refer Slide Time: 03:22) 

 

So, before we move ahead to algorithms to compute minimum cost spanning trees, let us 

look at some basic facts about trees. So, remember that by definition, a tree is a 

connected acyclic graph. So, the graph in general will have n vertices, so the claim is that 

any tree has exactly n minus 1 edges. So, this is very easy to prove, there are many 

different ways of proving it, here is one way of thinking about it. 

So, supposing we have a tree, so initially the tree is connected by a definition, so the 

entire graph forms one connected component. Remember, that when we read breadth 

first and depth first search, we said that we can take a node and look at everything 

connected to it and it forms a connected (Refer time: 04:10). So, this tree defines one 

single connected component, if you look at it as a graph in isolation. 

Now, because it is a tree, if I have an edge from i to j, there cannot be any other path 

going from i to j by some other edges, because if not that path plus this edge would form 

a cyclic. So, if there is an edge from i to j and I remove it, then by definition this 

component containing i and component containing j must get disconnected. So, if I 
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started with one component, now I get two components. So, I delete the first edge from 

the graph from my tree and I have one component more. 

Now, I delete one more edge by the same argument whichever component that edge 

belongs will split again. So, each time I delete an edge, I increase a number of 

components I have, but then, I know that in the end, if I have n isolated vertices, I can 

have utmost n component. So, I cannot have more than n components, if I have n 

vertices. So, I can only do this deletion n minus one times. 

So, I start with a tree, I keep deleting edges until everything is disconnected, I can only 

do this n minus 1 times and I must do it n minus 1 times get everything disconnected 

therefore, the tree must had exactly n minus 1 edges. 

(Refer Slide Time: 05:22) 

 

Now, if I take a tree and then I add an edge, it must create a cycle, we already saw this in 

this previous argument that we said, so supposing I have a tree, so a tree in general looks 

something like this. So, it is a graph, it has a kind of more cycles, but many things 

branching out. Now, if anywhere if I create a tree, supposing I add them and supposing I 

take some i there and some j here, we may decide to add an edge. 

So, we know that because it is a tree, there is already connection. So, there is some path 

which in this case to this vertex from i to j. So, therefore, that path p plus this edge forms 

acyclic. So, in a tree I have exactly n minus 1 edges and when I add any extra edge, no 

matter which edge I add, it will definitely form a cycle. 
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(Refer Slide Time: 06:06) 

 

So, another consequence of all these definitions is that between any two paths, any two 

vertices in a tree, there can only be one unique path. So, supposing there are actually two 

paths, so let us look at two vertices, here we have drawn them as i and j and suppose 

there are two parts. So, if I follow the two parts, then it is very clear that because there 

are two different ways are going there, there will be some loops somewhere in between. 

So, notice that it need not to be a loop including i and j, it could be somewhere in 

between i and j, but if you consider all the cases carefully, you can convince yourself, 

there is no way to have two distinct paths from i to j without creating a loop. And we 

have a loop, then the graph is no longer acyclic, so it is not a tree which is our 

assumption to be given. 
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(Refer Slide Time: 06:52) 

 

So, we are actually the following claim that we have these three properties, that G is 

connected, G is acyclic and G has n minus 1 edges, then any of these two implies the 

third. So, G is connected and G is acyclic by definition it is a tree, we have just shown 

the first arguments that any tree has n minus edges. So, the fact that the first two imply 

the third is what we have already shown. 

Now, you can easily convince yourself to find a formal prove that G is acyclic and has n 

minus 1 edges then in fact, it must be connected, everything must be connected 

everything. And finally, if G is connected and it has n minus 1 edges, then it can be 

acyclic graph, it cannot have any graphs. So, these are varies ways of looking at trees and 

sometimes we might use one property or another property. So, it is useful to keep these 

things in the back of our mind when we talk about trees in general. 
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So, our target right now is to build a minimum cost spanning tree. So, there are two 

naturally greedy strategies that one can think of. One is, since you are looking for a 

minimum cost tree to start with this smallest stage and incrementally build the tree. So, 

we keep adding edges to the existing tree, so that the new graph remains a tree and it 

grows as little as possible it terms of cost. This will give raise to an algorithm which is 

called prim’s algorithm. It will also turn out to be very similar to Dijkstra’s shortest path 

algorithm with a single source. 

The other strategy we can have is to look at edges in ascending order of cost and keep 

adding them, so long as we do not violate the tree property. Now, this is different from 

Prim’s Algorithm, because here we do not built a tree to start with, we keep adding 

edges, so that we do not create a cycle, but we could have disconnected groups of edges, 

but eventually there will all connected to form a tree. So, we will see these in more detail 

in the next 2 lectures, but let us just look at an initiative example of how these two 

strategies work. 
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(Refer Slide Time: 08:54) 

 

So, let us look at these two algorithms intuitively will come to them more detail later, so 

let us start with Prim’s Algorithm. Remember that the strategy in Prim’s Algorithm is to 

start with the smallest weight edge and then incrementally grow a tree. So, we start with 

a smallest edge here which is the edge weight 6 between 2 and 3. Now, we have to look 

at the existing tree which consists of this order the graph and decide whether to add one 

of these four edges to extend it. We cannot add that edge over here, we cannot add this 

edge, because it would not form a tree, it would be disconnected from this edges. So, we 

can add any of these, but we choose the smallest one. So, in this case, we choose the 

edge with weight 10. 

(Refer Slide Time: 09:37) 
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So, the next step in the tree is to add the edges 1, 2 and now, we have this tree. Now, if 

we look at possible edges that we can add, we have this edge, we have this edge and we 

have this edge. Now, the smallest among these is the edges with wait 18, but if I had that 

we get a cycle. So, this is not a good edge to add. So, therefore, we must add one of the 

other 2, again to pick the smaller one, which in this case is the edge labeled with weight 

20. 

(Refer Slide Time: 10:06) 

 

So, then we get this tree which has now this shape, this is a given tree. Now, we can add, 

we cannot add this is we know. So, we can either add the edges 70 or the edges labeled 

with weight 8 and obviously 8 is smaller. 

(Refer Slide Time: 10:23) 
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So, finally, we add that in this is a tree that we can get. So, this is the final tree, we get 

from Prim’s Algorithm, let us starting from the smallest edge and incrementally growing 

the tree. 

(Refer Slide Time: 10:35) 

 

The other strategy we said was to start with the edges in ascending order. So, we start 

with edges with 18, then 8, then there mean. So, we have this is the first one, this is the 

second one and this is third one and so on. So, we consider the edges in this order, 1, 2, 

3, 4, 5 and 6. So, we have the weights in 18, 20, then kindly 70. So, every 6 edges when 

we consider them in this order, so among these of course, if small f 6, so we add. 

(Refer Slide Time: 11:07) 
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So, this is the starter of our tree, now the next one is 8 and that does not form a cycle, it 

does not violate a tree property. So, we add that, notice now the crucial difference 

between Prim’s and Kruskal’s algorithm at this point, we do not have a tree, we have two 

separate trees in some sense. So, we have two different acyclic component within this 

graph which are not connected each other, but we are just going a order of an edges. 

So, next we will see 10 is the next edges that we can add, this does not form a cycle. So, 

we add that, so in some sense, we are grown this component and left that component 

grown. Now, the next one would be 18, but if you add 18, it would form a cycle. So, we 

skip 18, we move to the next one, this is 20, 20 is fine and 20 will in fact, connect the 

two component to form a tree. So, we add 20, now we are done, because we have added 

n minus 1 edges, there are five vertices, we got 4 edges and therefore, we are definitely 

got a tree. 
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