
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 05

Lecture - 29

Minimum Cost Spanning Trees

Having seen a variety of algorithms for shortest paths on weighted graphs, we now move

to a completely different problem that of computing, what is called Minimum Cost

Spanning Tree.

(Refer Slide Time: 00:12)

So, to motivate the problem, let us consider the following example. Suppose, we are in a

district which has a road network and after a bad cyclone, the roads are all being

damaged. So, the first priority of the government is to restore the roads, so that relief can

be sent to various parts of the district and also people can start moving around again. So,

the priority is to restore enough roads, so that everybody can move around. So, the first

criteria for the government to restore road is to ensure connectivity. So, given this which

set of roads should the government restore first?

308

(Refer Slide Time: 00:48)

So, if the main criterion is minimum connectivity, then it should be clear that there is no

point in restoring roads which find a loop. For instance, supposing we restore all these

four roads, then we could have deleted any one of these roads, say 3 to 4 or 2 to 3 and

still one can get from any of these four towns to any four other towns in the district. So,

removing an edge from a loop cannot disconnect a graph and our aim is to find some sub

set of edges within this graph which are connected in such a way that this is a minimal

such set of edges.

So, what we want is a connected sub graph of this original graph which does not have

any loops which is acyclic and this is precisely what is called a tree. So, tree by

definition is a connected acyclic graph. And in particular, we start to the arbitrary graph

and we are looking for a tree which sits inside the graph, which is a sub graph in terms of

the number of the edges, which connects all the vertices in the original graph. So, such a

tree is called a spanning tree, it spans the vertices of the original graph, but it forms a tree

outer the sub set of three edges.

309

(Refer Slide Time: 02:00)

So, in this graph for instance, one spanning tree we could form, other red edges shown

here, 1 to 2, 2 to 3, 3 to 4 and 4 to 5. Of course, we could form other spanning tree for

instance this is green one, this is 1 to 3, 2 to 3, 2 to 5 and 4 to 5. So, there are many

possible spanning trees that one can construct on a given graph.

(Refer Slide Time: 02:22)

Now, suppose that the graph also has weights. In this example, the weight for instance

could be the cost of repairing a road. So, supposing restoring the road has a cost and now

the government would like to not only restore connectivity, but do it I mean at minimum

cost. So, if for instance, the government chose to repair this tree of roads, then the total

cost is 18 plus 6, 24 plus 70, 94 plus 20, 114. So, it could incur cost of 114 to the store,

310

this spanning tree.

On the other hand, if the government chooses green spanning tree, then the cost reduces

to 10 plus 6 is16 plus 20 is 36 plus 8 is 44. So, different spanning trees now will come at

different cost and the goal would be to reduce the cost per minimum. In this particular

example, you can check this green tree, which has cost 44 is actually the minimum cost

spanning tree on this particular graph.

(Refer Slide Time: 03:22)

So, before we move ahead to algorithms to compute minimum cost spanning trees, let us

look at some basic facts about trees. So, remember that by definition, a tree is a

connected acyclic graph. So, the graph in general will have n vertices, so the claim is that

any tree has exactly n minus 1 edges. So, this is very easy to prove, there are many

different ways of proving it, here is one way of thinking about it.

So, supposing we have a tree, so initially the tree is connected by a definition, so the

entire graph forms one connected component. Remember, that when we read breadth

first and depth first search, we said that we can take a node and look at everything

connected to it and it forms a connected (Refer time: 04:10). So, this tree defines one

single connected component, if you look at it as a graph in isolation.

Now, because it is a tree, if I have an edge from i to j, there cannot be any other path

going from i to j by some other edges, because if not that path plus this edge would form

a cyclic. So, if there is an edge from i to j and I remove it, then by definition this

component containing i and component containing j must get disconnected. So, if I

311

started with one component, now I get two components. So, I delete the first edge from

the graph from my tree and I have one component more.

Now, I delete one more edge by the same argument whichever component that edge

belongs will split again. So, each time I delete an edge, I increase a number of

components I have, but then, I know that in the end, if I have n isolated vertices, I can

have utmost n component. So, I cannot have more than n components, if I have n

vertices. So, I can only do this deletion n minus one times.

So, I start with a tree, I keep deleting edges until everything is disconnected, I can only

do this n minus 1 times and I must do it n minus 1 times get everything disconnected

therefore, the tree must had exactly n minus 1 edges.

(Refer Slide Time: 05:22)

Now, if I take a tree and then I add an edge, it must create a cycle, we already saw this in

this previous argument that we said, so supposing I have a tree, so a tree in general looks

something like this. So, it is a graph, it has a kind of more cycles, but many things

branching out. Now, if anywhere if I create a tree, supposing I add them and supposing I

take some i there and some j here, we may decide to add an edge.

So, we know that because it is a tree, there is already connection. So, there is some path

which in this case to this vertex from i to j. So, therefore, that path p plus this edge forms

acyclic. So, in a tree I have exactly n minus 1 edges and when I add any extra edge, no

matter which edge I add, it will definitely form a cycle.

312

(Refer Slide Time: 06:06)

So, another consequence of all these definitions is that between any two paths, any two

vertices in a tree, there can only be one unique path. So, supposing there are actually two

paths, so let us look at two vertices, here we have drawn them as i and j and suppose

there are two parts. So, if I follow the two parts, then it is very clear that because there

are two different ways are going there, there will be some loops somewhere in between.

So, notice that it need not to be a loop including i and j, it could be somewhere in

between i and j, but if you consider all the cases carefully, you can convince yourself,

there is no way to have two distinct paths from i to j without creating a loop. And we

have a loop, then the graph is no longer acyclic, so it is not a tree which is our

assumption to be given.

313

(Refer Slide Time: 06:52)

So, we are actually the following claim that we have these three properties, that G is

connected, G is acyclic and G has n minus 1 edges, then any of these two implies the

third. So, G is connected and G is acyclic by definition it is a tree, we have just shown

the first arguments that any tree has n minus edges. So, the fact that the first two imply

the third is what we have already shown.

Now, you can easily convince yourself to find a formal prove that G is acyclic and has n

minus 1 edges then in fact, it must be connected, everything must be connected

everything. And finally, if G is connected and it has n minus 1 edges, then it can be

acyclic graph, it cannot have any graphs. So, these are varies ways of looking at trees and

sometimes we might use one property or another property. So, it is useful to keep these

things in the back of our mind when we talk about trees in general.

314

(Refer Slide Time: 07:45)

So, our target right now is to build a minimum cost spanning tree. So, there are two

naturally greedy strategies that one can think of. One is, since you are looking for a

minimum cost tree to start with this smallest stage and incrementally build the tree. So,

we keep adding edges to the existing tree, so that the new graph remains a tree and it

grows as little as possible it terms of cost. This will give raise to an algorithm which is

called prim’s algorithm. It will also turn out to be very similar to Dijkstra’s shortest path

algorithm with a single source.

The other strategy we can have is to look at edges in ascending order of cost and keep

adding them, so long as we do not violate the tree property. Now, this is different from

Prim’s Algorithm, because here we do not built a tree to start with, we keep adding

edges, so that we do not create a cycle, but we could have disconnected groups of edges,

but eventually there will all connected to form a tree. So, we will see these in more detail

in the next 2 lectures, but let us just look at an initiative example of how these two

strategies work.

315

(Refer Slide Time: 08:54)

So, let us look at these two algorithms intuitively will come to them more detail later, so

let us start with Prim’s Algorithm. Remember that the strategy in Prim’s Algorithm is to

start with the smallest weight edge and then incrementally grow a tree. So, we start with

a smallest edge here which is the edge weight 6 between 2 and 3. Now, we have to look

at the existing tree which consists of this order the graph and decide whether to add one

of these four edges to extend it. We cannot add that edge over here, we cannot add this

edge, because it would not form a tree, it would be disconnected from this edges. So, we

can add any of these, but we choose the smallest one. So, in this case, we choose the

edge with weight 10.

(Refer Slide Time: 09:37)

316

So, the next step in the tree is to add the edges 1, 2 and now, we have this tree. Now, if

we look at possible edges that we can add, we have this edge, we have this edge and we

have this edge. Now, the smallest among these is the edges with wait 18, but if I had that

we get a cycle. So, this is not a good edge to add. So, therefore, we must add one of the

other 2, again to pick the smaller one, which in this case is the edge labeled with weight

20.

(Refer Slide Time: 10:06)

So, then we get this tree which has now this shape, this is a given tree. Now, we can add,

we cannot add this is we know. So, we can either add the edges 70 or the edges labeled

with weight 8 and obviously 8 is smaller.

(Refer Slide Time: 10:23)

317

So, finally, we add that in this is a tree that we can get. So, this is the final tree, we get

from Prim’s Algorithm, let us starting from the smallest edge and incrementally growing

the tree.

(Refer Slide Time: 10:35)

The other strategy we said was to start with the edges in ascending order. So, we start

with edges with 18, then 8, then there mean. So, we have this is the first one, this is the

second one and this is third one and so on. So, we consider the edges in this order, 1, 2,

3, 4, 5 and 6. So, we have the weights in 18, 20, then kindly 70. So, every 6 edges when

we consider them in this order, so among these of course, if small f 6, so we add.

(Refer Slide Time: 11:07)

318

So, this is the starter of our tree, now the next one is 8 and that does not form a cycle, it

does not violate a tree property. So, we add that, notice now the crucial difference

between Prim’s and Kruskal’s algorithm at this point, we do not have a tree, we have two

separate trees in some sense. So, we have two different acyclic component within this

graph which are not connected each other, but we are just going a order of an edges.

So, next we will see 10 is the next edges that we can add, this does not form a cycle. So,

we add that, so in some sense, we are grown this component and left that component

grown. Now, the next one would be 18, but if you add 18, it would form a cycle. So, we

skip 18, we move to the next one, this is 20, 20 is fine and 20 will in fact, connect the

two component to form a tree. So, we add 20, now we are done, because we have added

n minus 1 edges, there are five vertices, we got 4 edges and therefore, we are definitely

got a tree.

319

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

