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So, let us look at a formal algorithm to explore a graph. So, recall that a graph consists of 

a set of vertices and a set of edges, the edges are the connections between the vertices, 

they may be directed or undirected. 
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So, if we look at it undirected graph, the problem we are looking at is to find out, 

whether the source vertex is connected to a target vertex. And we said that this amount to 

finding a path from v 0 the source vertex to v k the target vertex, where each pair of 

vertices on the path is connected by an edge in the graph. 

(Refer Slide Time: 00:35) 

 

So, we argued that we could easily do this for small graphs visually, but if you want to 

write an algorithm, we need a way to representing the graph. So, the first thing we 

decided was, that we would name the vertices 1 to n. So, we have n vertices, we will just 
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call them 1, 2, 3, 4 up to n. Then we can represent to structure of the graph through an 

adjacency matrix. 

In this adjacency matrix, the i j’th entry indicates the presents or absents of an edge from 

vertex i to vertex j. So, a i j is 1, there is an edge, a i j is 0, if there is no subject. In this 

matrix, if you want to find out, whether pair of vertices are directly connecting, we just 

have to prove their appropriate entry, we can do that in constant time. To find all the 

outgoing neighbors of a vertex, we have to scan the row for that vertex. So, that takes 

linear time in terms of the number of vertices. Now, one thing we observed is that, 

typically many graphs, this matrix is largely 0, most pairs are not connected. 

(Refer Slide Time: 01:36) 

 

So, we can get a more compact representation by this listing out the neighbors of each 

vertex. So, instead of keeping a row of 1’s and 0’s, we just record those vertices, whose 

entries are 1. So, this keeps as a more efficient representation for graphs, where the 

number of edges is closer to the number of vertices. But, in this case in order to find out, 

whether a given pair i j is connected, we have to look at the list for i and see, if j appears 

in it. 
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Now, our strategy for finding a path connecting a source vertex in a target vertex, which 

is follows, we would start at the source vertex and keep exploring the graph 

systematically. Each time, we went to a vertex, you would mark it as visited, and then we 

have to make sure, that when you are exploring vertices, we did not re explore the same 

vertex twice. So, we said they would be two fundamental strategies breadth first and 

depth first. So, today we are going to look at breadth first search. 

(Refer Slide Time: 02:28) 
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So, the idea breadth first search is to explore the graph level by level. So, we start at the 

source vertex and we now explore all the vertices, which are one step away, connected 

by a direct edge to the source vertex. Then, we leak out all vertices which are newly 

connected one step away from level 1 vertices. So, these are two steps away from the 

source vertex, then for three steps and so on. 

Now, while we are doing this set duration, we have to keep track of two quantities, we 

have to first note of course, whether a given vertex has been visited. Has it been 

explored, is it connected to the source vertex, also for each such vertex, we have to 

explore it is neighbors. So, for each vertex, we need to know, a has it been visited and we 

may not be able to explored it as soon as it is visited. So, we need to remember that we 

have explored it or not explored it and those which are not explore, we have to make sure 

we explore them once. 

(Refer Slide Time: 03:26) 

 

So, the way to do this is to use some data structures to keep track of these quantities. As 

we said the set of vertices is numbered 1 to n. So, we can keep an array visited with 

entries 1 to n, which tells us whether do not vertex i has been visited. Now, when I will 

be visit a vertex, we need to subsequently explore it. Since, we may not explore it 

immediately, we may have to keep it pending for a while. So, we have to keep a 

collection of these vertices, which have been visited, but not yet been explored. 
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There are many ways to do this, but one natural way is to explore them in the order in 

which they will visited. So, we want to explore in the order in which they will visited, a 

natural data structure to keep the list of unexplored, but visited vertices is a queue. So, 

we put each visited vertex into the queue, the first time we come to it, and then we 

process all the vertices in the queue, until all vertices have been explored. 

 (Refer Slide Time: 04:30) 

 

So, else some high level Pseudo code for breadth first search, when we reach a vertex i 

which we have visited for the first time, we will eventually explore it. What is it mean to 

explore a vertex, we look at the outgoing edges i comma j, if j are already been visited, 

we are nothing to do. On the other hand, if j is not been visited, then we will mark it as 

visited and add it the queue to be explore later. 

So, if begin by marking the source vertex and adding it to the queue and at each stage, 

we will explored the vertex of the head of the queue. If at some stage, there are no 

vertices in the queue, it means that every vertex, we have visited have been explored and 

so there is no new information left and we can stop the exploration. 
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So, before giving the actual code for breadth first search, let us workout the example that 

we have and see, how this data structures are updated. So, we have these 10 vertices 1 to 

10 and we have looking for path starting it 1. So, in the queue, we have two pointers as 

usual, we have a pointer which we indicate in green, which is the head of the queue, in a 

pointer red, which is tail of the queue. 

So, we initialize the queue to have the starting vertex 1 and we also mark this vertex has 

been visited. Now, we have to explore 1, so what we do is we remove 1 from the queue 

and systematically check each of it is outgoing edges and if those target vertices are not 

already visited, we add that. So, two is the first in order of 1 to 10, first neighbor of 1, it 

is not been visited, so we add it to the queue and mark to the visited in the visited array. 

Likewise, we mark 3 is visited, and then we mark 4 is visited, at this state, we finished 

exploring vertex 1. So, now, we go back to the queue and see, if there is anything yet to 

be explore, which have been visited and there is we pick up the first search namely 2. So, 

I remove 2 from the queue and we explore it is outgoing neighbors. Now, the outgoing 

neighbors of 2 in this case are 1 and 3. But, since 1 and 3 are both visited, we have no 

work to do and we go on and go back to the queue. 

For in the next stage, we pick up the vertex 3 and we look at it is outgoing neighbors. 

Again, it has outgoing neighbors 1 and 2, both the feature already visited, so there is 

nothing to be done. We come back to the queue and pickup 4 and try to explore it. So, 4 
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has neighbor 1, which is already been visited, the next neighbor is 5, since 5 is new we 

added to the queue and we mark it as visited, then it has a neighbor 8. So, we add that 

also to the queue and mark it as visited. 

Now, we are finished exploring 4. So, we go back to the queue and look for the next 

thing to be explore, which in this case is 5. So, 5 as got neighbors 4, 6 and 7; 4 is already 

been visited, but 6 is new and so is 7. Now, we go back and explore 8, so 8 has neighbors 

4, 6 and 9; 4 and 6 are old, but 9 is new, we add 9 to the queue. Now, we go back and 

explore 6, because 6 is the vertex of the head of the queue. 

So, now, we look at neighbors of 6, neighbors of 6 are 5, 7, 8 and 9. So, when we remove 

6 from the queue, we are nothing to do, we go back and find that, there is nothing to be 

done, because all the neighbors of 6 have already been visited. Then, we pick up 7; once 

again we find that all the neighbors of 7 have already been visited. Finally, we pickup 9 

and we pickup 9, we find that it has neighbor 6, 8 and 10, 10 is new, so 10 gets mark and 

add it to the queue. 

Finally, we go to 10, we find it has only one neighbor 9, which is already visited, at this 

stage the queue becomes empty and the algorithm terminates. Now, in this case, we have 

marked all the vertices are visited, which indicates that every vertex in this lab was 

actually reachable from that. If we had add more vertices, for example, if we had add a 

component in this graph; that is nothing to stop us from having many components to be 

could had a graph, it more vertices 11, 12, 13 and 14. Then this process starting from 1 

would have left 11, 12, 13 and 14 and marked as unvisited. 
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So, here is some more formal code for BFS, so BFS is a function which takes as it is 

argument, the vertex from where we want to explore the graph. So, as we said the 

vertices are called 1 to n, we have this array visited, which is initialize to 0 and we have a 

queue to mark the vertices still to be explored, this is initialized to empty. So, we begin 

by marking that visited of i equal to 1. So, vertex i is mark that visited and we added to 

the queue. 

Now, so long as a queue is not empty, we proceed in the following loop, we extract the 

head of the queue, the vertex to be it is it explored next. For each of it is outgoing edges, 

if it is something which has not been visited before, we mark it as visited and we add it 

to the queue. So, this is exactly the code for the algorithm, we just execute by hand and it 

is quiet straight forward. There are two data structures and array to keep track of the 

visited vertices and a queue to keep track of vertices which need to be explored file. 
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So, how do we analyze the complexity of an algorithm ((Refer Time: 10:05)), one way to 

do it is to look at the loop. So, remember that, when we have an algorithm like this 

((Refer Time: 10:10)) which has the loop, the loop is usually the place where we have to 

look for it. So, we have one iteration, where we have the loop of 1 to n; where we assign, 

this is it j equal to 0. So, this is something which takes order n time. 

And now, we have a loop here, where we keep extracting things from the queue and we 

do things here. So, we have to kind of understand, how many times this loop is going to 

execute and how much time this inner loop going to execute. So, each vertex enters the 

queue exactly once. So, it we enter at exactly once, ((Refer Time: 10:47)) then it says 

that this outer loop here will take order n time. 

Because, assuming the graph is connected, every vertex will be visited once and when 

that vertex will visited to enter the queue and it will come out in the head of the queue 

exactly once. Now, for each vertex, we have to scan all it is neighbors. So, what we said 

was that, this to be order n, if we have an adjacency matrix. Because you need to go from 

the breadth first entry for j and we have to look at the entire row for this, so this is order 

n. 

So, therefore, the graph is connected first of all every vertex will get into the queue. So, 

we will do the queue loop exactly n times. And for each j that is extracted, we need to 
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examine all it is neighbors. So, that will be a scan of size n and therefore, overall it is 

order n square, this two nested loops are size n. 

(Refer Slide Time: 11:43) 

 

So, this is clearly a situation, where if we have very few edges, we can improve the 

complexity by using an adjacency list representation is in the adjacency matrix 

representation. So, the number of edges is m and m is much smaller than n squared. So, 

if m it say proportional to n itself, then what we can do is in the list associated with j, 

which is have to look at the neighbors of j. We do not have to look at all the vertices all 

of order n entries in your adjacency matrix, this is called a degree. 

So, the degree of a vertex is a number of vertices connected to it. So, if we do this, then 

what we will find is that, inside the iteration of the inner loop, each step of scanning for 

the neighbors takes time proportional degree of j. Now, the degree of j of course, varies 

from one node to another, so how do we count this correctly. So, if you do not count it 

paired loop, but count it across the entire processing of the entire cycle vertices, what we 

will see is that for every edge in the graph, the form i comma j. 

There will be a time and i’st process and I will see j a list and there will be a time and j’st 

processed and I will see i in is this. In other words, if I take all the adjacency list of all 

the vertices, each edge will be represented twice and an edge i j will appeared as an entry 

j and the list for i and an entry i and the list for j. So, while, it is not easy to count per 

iteration, I count across all iterations, I will explore each edge exactly twice. 
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So, 2 m is ordered m, so overall exploring the neighbors across all n iteration takes times 

O m. So, what this means is that, the first iteration of visiting the marking everything 

visited takes time more m, when we have a O n loop, across which we do O m steps 

totally across the n steps, so it is overall n plus m. So, the complexity of the breadth first 

search, if you are using an adjacency list, it drops to O n plus m versus order n squared 

for the adjacency matrix. So, if we have fewer edges then it makes a lot of sense to use 

adjacency list for the breadth first search. 

(Refer Slide Time: 14:08) 

 

Now, in graphs the input size is typically taken to the m and n. In other words, both 

parameters are somewhat independent of each other; because we could have the set of 

vertices could very few edges with very many edges. So, usually m and n together are 

taken to be the input size. So, order m plus n is actually a linear algorithm. So, this is for 

best possible, because we have to read the input not at to process it typically. So, in 

linear time, were able to do breadth first search. 
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So, we can do something more in breadth first search, all we have identified is which 

vertices are connected to the usual vertex one of the source vertex in general from where 

you start breadth first search. So, how do we identify, how to go from the source vertex 

for given vertex. So, if we started i and BFS i sets visited j equal to 1, we know that i and 

j are connected, but we do not know the path. 

So, what we can easily do is to remember, where we marked each vertex from. So, when 

we mark a vertex k as visited, it is marked because it is a neighbor of some already 

visited neighbor j. So, when we can say that k was marked i j, we will use the word 

parent. So, we will say that the parent of k is j, when but following the parent links; we 

can re construct the path backwards from k to the original source vertex. 
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So, this is very easy to do an app code, so we just have to add one line, so we two line. 

So, initially we say that for every vertex the parent is undefined. So, we had said a value 

like minus 1, because we note that the name of vertices are 1 to n, and then when we 

mark a vertex, since we are exploring an edge j k, the parent k is going to be j. So, we 

assign the parent of k equal to j, the rest of the code is identical to the earlier breadth first 

search, you just add it this new array parent to keep track of how we mark the vertices. 

So, that we can re constructs the path. 

(Refer Slide Time: 16:16) 
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So, we can go backward, so because k was mark by j, j would be mark by some other 

thing and so on. So, by this following these links back, we can go back from any k to this 

path vertex and therefore, we can reconstruct the path. The other thing that we can do in 

breadth first search is keep track of the level. So, remember, we said the breadth first 

search actually explores the graph level by level. 

Looks at all the vertices to the one step away from the source, then those vertices are one 

step away from these what, so there at level 2, two steps away from the source and so on. 

So, instead of just saying that the vertex is visited, we can ask at what level it was visit. 

So, initially we say that all the levels are undefined, and then each time we visit a new 

vertex, it is 1 level more than the vertex from which it was visit. So, eventually we say 

that, if level j is assign some number p, it must be t steps away from the original vertex. 

(Refer Slide Time: 17:15) 

 

So, this can also be easily added to a code along with a parent code. So, last time, we 

added this assignment for the parent. Now, we also add the assignment for level, so we 

say initially the level of each vertex is undefined. So, it is some non sensible value like 

minus 1. When, we say that the level of the start vertex is 0, and now whenever we visit 

a new vertex, if it is level, if it is visited, then it must have a level. 

So, this level is minus 1, so it is level is minus 1, it means is not visit, so level minus 1 

means not visited. Same as in an earlier thing, same as visited k is 0 and if so we had 
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adjust the level of k to be one more than the level of j from which it was visited and of 

course, we said the parent was before. 

(Refer Slide Time: 18:17) 

 

So, we can see all this works in our earlier example, as usual we start with 1 and we 

mark it is level as 0 and it does not have a pair. Now, when we add 2, 3 and 4 all of them 

will be at level 1 and all of them will have that is parent 1, because we have an explore 

from 1. Then, as before two does not add anything new to our list, p does not add 

anything to a list. 

Now, 4 will add 5 and int, so far these 2, the level will be 2 and the parent will be 4, 

indicating that I bought to 5 and 8 from 4 in my exploration. Then, from 5, I will get 6 

and 7. So, these are now at level 3, because 5 was itself at level 2, therefore, 6 and 7 are 

at level 3 and their parents are 5, from 8, I will go to 9, a 9 is also at level 3, because 8 

was already at level 2, so 9 is level 3 and it is parent to the 8. 

And finally, we will find that 10 is at level 4 and it is parent is 9. So, now, we can trace 

pair. So, we can say that, I got from 10, I came from 9, so 9 came from 8, so 8 came 

from 4, 4 came from 1. So, the path is actually 10 to 9 to 8 to 4 to 1 and you can see 

indeed, we have a path from 10 to 9 to 8 to 4 to 1. So, this is how you can re construct 

the path information and also the distance information at the same time, when you are 

computing breadth first search. 
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So, breadth first search if we add this level predicate, it actually gives us the shortest path 

to each node in terms of number of edges. Now, in general, we will see that, if you do 

not have the uniform cost, we have different cost on edges, then the shortest path need 

not be just the shortest in term to number of edges. We have to add the cost associated 

each path these are called weighted graphs. But, in an un weighted graph that is a graph 

we just has simple edges the way we have it now. Breadth first search has the added 

advantage of computing the shortest path in terms of number of edges from the source 

vertex to every reachable vertex from it. 
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