Chapter 19: Database Connectivity (e.g., JDBC)

Introduction

In the realm of enterprise-level and data-driven applications, database connectivity plays a
crucial role. Most applications today rely heavily on databases to store, retrieve, and manipulate
data. Java, being a versatile programming language, provides a powerful API called JDBC (Java
Database Connectivity) forestablishing a seamless connection between Java applications and
relational databases such as MySQL, PostgreSQL, Oracle, and others.

This chapter explores the architecture, components, and usage of JDBC. It covers various
operations such as connecting to a database, executing queries, retrieving results, using prepared
statements, and handling exceptions. The knowledge from this chapter is vital for building full-
stack applications and integrating backend logic with persistent storage.

19.1 Overview of JDBC
What is JDBC?

JDBC (Java Database Connectivity) is an API in Java that allows applications to interact with
a variety of databases using a standard set of interfaces and classes.

Key Features:

e Platform-independent

e Supports multiple RDBMS through drivers

e Enables execution of SQL queries from Java code
e Handlestransactions and batch processing

19.2 JDBC Architecture

1. Two-Tier Architecture
e Java application communicates directly with the database using JDBC drivers.

2. Three-Tier Architecture

e Java application communicates with a middle-tier (like a servlet or application server),
which in turn communicates with the database.




19.3 JDBC Drivers

Types of IDBC Drivers:

Type | Name Description

1 JDBC-ODBC Bridge Driver | Uses ODBC driver (deprecated)

2 Native-API Driver Converts JDBC calls into DB-specific API calls

3 Network Protocol Driver Uses middleware server for database access

4 Thin Driver (Pure Java) Directly converts JDBC calls into network protocol

Type 4 drivers are widely used in modern applications due to their efficiency and platform-
independence.

19.4 Basic Steps in JDBC Programming

Import the JIDBC package
Load and register the driver
Establish a connection
Create a statement

Execute SQL queries
Process the results

Close the connection

No ok~ wde

19.5 Connecting to a Database: Example

Let’s connect to a MySQL database.

import java.sql.*;

public class DBConnect {
public static void main(String[] args) {
String url = "jdbc:mysqgl://localhost:3306/college";
String username = "root";
String password = "admin";

try {
// Load Driver (optional from JDBC 4.0 onward)

Class.forName("com.mysqgl.cj.jdbc.Driver");

// Establish Connection

Connection con = DriverManager.getConnection(url, username,
password);

System.out.println("Connected successfully!");



con.close();
} catch (Exception e) {
e.printStackTrace();
}

19.6 Executing SQL Statements

1. Statement Interface

Used to execute static SQL statements.

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM students");

2. PreparedStatement Interface

Used for executing parameterized queries — safer and faster.

PreparedStatement pstmt = con.prepareStatement("SELECT * FROM students WHERE
id = ?");

pstmt.setInt(1, 101);

ResultSet rs = pstmt.executeQuery();

3. CallableStatement Interface

Used for calling stored procedures.

CallableStatement cstmt = con.prepareCall("{call getStudent(?)}");
cstmt.setInt(1, 101);
ResultSet rs = cstmt.executeQuery();

19.7 ResultSet Interface
Used to process the results retrieved from the database.

Common Methods:

e next()
e getInt(columnIndex/name)

e getString(columnIndex/name)

while(rs.next()) {
System.out.println("ID: " + rs.getInt("id"));
System.out.println("Name: " + rs.getString("name"));



19.8 Inserting, Updating, and Deleting Records

Insert Example:

PreparedStatement pstmt = con.prepareStatement("INSERT INTO students VALUES
(2, 2, 2)");

pstmt.setInt(1, 103);

pstmt.setString(2, "Aman");

pstmt.setString(3, "B.Tech");

int rows = pstmt.executeUpdate();

System.out.println(rows + " rows inserted.");

Update Example:

PreparedStatement pstmt = con.prepareStatement("UPDATE students SET name=?
WHERE id=?");

pstmt.setString(1, "Rahul");

pstmt.setInt(2, 101);

pstmt.executeUpdate();

Delete Example:

PreparedStatement pstmt = con.prepareStatement("DELETE FROM students WHERE
id=?");

pstmt.setInt(1l, 101);

pstmt.executeUpdate();

19.9 Handling Exceptions and Closing Resources
Always close:

e ResultSet
e Statement/Prepared Statement
e Connection

Try-with-resources is recommended:
try (Connection con = DriverManager.getConnection(...);
PreparedStatement pstmt = con.prepareStatement(...)) {

// execute query

} catch (SQLException e) {
e.printStackTrace();

}




19.10 JDBC Transaction Management

con.setAutoCommit(false); // Start transaction

try {
pstmtl.executeUpdate();

pstmt2.executeUpdate();

con.commit(); // Commit transaction
} catch (SQLException e) {

con.rollback(); // Rollback on error

}

19.11 Batch Processing in JDBC

Efficient for bulk updates/inserts:

PreparedStatement pstmt = con.prepareStatement("INSERT INTO students VALUES
(2, 2, 2)");
for (int 1 = 0; i < 100; i++) {

pstmt.setInt(1, i);

pstmt.setString(2, "Student" + i);

pstmt.setString(3, "B.Tech");

pstmt.addBatch();

}
pstmt.executeBatch();

19.12 Metadata in JDBC

Use DatabaseMetaData and ResultSetMetaData to get info about DB and result sets.

DatabaseMetaData dbmd = con.getMetaData();
System.out.println("DB Product: " + dbmd.getDatabaseProductName());

ResultSetMetaData rsmd = rs.getMetaData();
System.out.println("Column Count: " + rsmd.getColumnCount());

19.13 Best Practices in JDBC

e Use PreparedStatement to prevent SQL injection.

e Always close resources.

e Prefer connection pooling (using libraries like HikariCP in production).
e Handle exceptions with proper logging.

e Separate DB logic from business logic (DAO pattern).



Summary

This chapter provided a comprehensive understanding of database connectivity in Java using
JDBC. From understanding JDBC architecture to performing CRUD operations, managing
transactions, and ensuring safe database interaction, you are now equipped to build Java
applications with integrated database functionality. JDBC remains a cornerstone for backend
development, especially in traditional Java EE and Spring applications.

In the next chapter, we will explore how to integrate JDBC with GUI and Web Applications for
real-world software systems.




